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Overview

This final report describes research accomplished during the period December 31, 1994
- December 30, 1998 on the project, “Utilizing serial measures of breast cancer risk
factors”. The overall goals of the project were to develop and apply theoretical statistical
methods for utilizing repeated measurements of serum levels of endogenous hormones and
other biologic measurements in epidemiologic studies of breast cancer. During the four year
study period, the following research was accomplished: (1) a technique was developed for
correcting for measurement error when subjects have a variable number of repeated exposure
measurements; (2) the technique was applied to nested case-control studies of endogenous
estrogens and androgens and risk of post-menopausal breast cancer; (3) a method was de-
veloped for adjusting for the systematic variability of hormone levels over the menstrual
cycle in order to evaluate the association between estrogen levels and risk of pre-menopausal‘
breast cancer; (4) guidelines were devised for choosing the number of repeated measurements
and optimal time interval between repeats in half-life studies of environmental contaminants
which have been linked with an increased risk of breast cancer; (5) methodology was devel-
oped for analyzing correlated panel data which can arise when serially monitoring toxicity
in clinical trials of breast cancer treatments; and (6) a conceptual approach based on equiv-
alence testing was proposed for assessing the validity of a dietary assessment method for use
in epidemiologic studies of breast cancer and other diseases.

This report is organized into six chapters detailing the background, methods, results and
conclusions of each of the six research areas described above. Four manuscripts based on
this project have been published (see Bibliography), a fifth manuscript has been submitted
for publication, and a sixth is in preparation. Not only were the main goals outlined in
the Statement of Work achieved, but additional research beyond the scope of the original
proposal was also successfully executed. This career development award hés yielded impor-
tant methodologic contributions to the analysis of breast cancer studies involving repeated
measurements of potential risk factors and has enabled the principal investigator to establish

a solid foundation for pursuing further research in this area.




Table of Contents

1. Correcting for Measurement Error in the Analysis of Case-Control Data with
Repeated Measurements of Exposure

1.1 TOtrOUCHION. .ttt tsenet it et ineeneeneneeeenennsneaneessntenesssanearennsanearensens 8
B LY (511306 e K T PSPPI 10
1.2 EXamPle...oiniririiniiini i 15
1.3 CONCIUSIONS. « vt evnereenenenneueeneueerernernerteseessarssanaenrnsanerserssresens 18
L4 RO OTEIICES . .ttt ene et tnteneeneeneareneenenseneeraneenasssesesasstsnerneorennsrrsenens 22
1.5 APPENdiX...ouueenenreniiniiiiiiiiiii e 27

2. Relation of Serum Testosterone and Dehydroepiandrosterone Sulfate with Risk of
Breast Cancer in Postmenopausal Women

2 T £1Y5 0 16 1o (s )+ DS PTSSR 30
PR, (= 1110 1o 1 T PP 32
2.3 RESUIES. v vetstieretettiittttessreeeenaeeriesessannsstessssssssseesssissnsesannnnsenns 36
2.4 CONCIUSIONS. .t tttiinttiitttrireeaeernseenseernesentssnneissntoineessnssenaasesnaon 38
2.5 R O OIS . 1 vt uueeeeetneeeeassteeesseetsannseeassaeeanssossonnasssssannesossnnnsnns 43

3. Sample Size and Study Design Considerations for Half-Life Studies

TR £515 16 18001510 ) s SO 55
R\, (511110 1o 1 T PP 56
3.3 EXAMPIE..uiunrniniiiniiiiiii e 62
3.4 CONCIUSIONS. 11t tntinrinrinririereeeeneenerteraesenesnnencensseenrtisereoresnssnssnonne 65
3.5 RO O IICES .t vt enetrteenteeneretinseaneenstaserreereenseasesnassssneiensosaessasenans 70
3.6 APPendix Lovuivnieninieniiieiiiiii e 72
3.7 Appendix IL.....cooviiiiiiiiiiiii i 74

4. The Analysis of Correlated Panel Data Using a Continuous Time Markov Model

F/B T 1315 50T L0 Te15 10 s U TR 77
ViR Y, (1017 1o - T PO 78
4.3 EXAMPLE...uiviririiniieniniiiii e 82
4.4 COMNCIUSIONS. et tnreienntiiiteernneerneerneereresraneesssaasssseessnnsissesaneeenss 86

F R S (5 5 110 < T PPN 87

5. The Application of Equivalence Tests in Validation Studies of Dietary Assessment
Methods

BT B (17 o s A0 Ts15 (o) ¢ DU PPN 92
IR 121 110 s L T PP 95
5.3 COMCIUSIONS. vt vt terennererennneeesnsesesssssessssossersnressnnnssssssessssessnnneesns 102

54 R OIS . 1 u e vttt treitereneessnsenssnsssssnesessssssssnsssenssssassssesesssssonsnnnnns 104



Pre-Menopausal Risk of Breast Cancer

6.1 TNtTOQUCHION. e tnreeneteeteteirernreeteraeenseraeereeneenrssseenessresinsessssnseensennes 107
ALY (3110 ¢ C PU T O P TOP P PP 108
6.3 RESUIS. 1t vutteentettt e it ieneeeaaeenseenseernssanaesaseserasasasesansernneessnsssnes 111
6.4 COMNCIUSIONS. v enveenneenteaneinterneareereerseaaeanesaseseeantesacsnsesseersesrassiasanes 114
LRI A (510 110 T PP PP 115

7. Bibliography........cocoviiniiiiiiiii 119

6. Adjusting Hormone Levels for Day of Menstrual Cycle in Studies of Hormones and



Chapter 1

Correcting for Measurement Error in the Anal-
ysis of Case-Control Data with Repeated Mea-

surements of Exposure




1 Introduction

In most case-control studies, the risk factors of interest are measured with error. For biologic
variables, such as blood pressure, nutrient, and hormone levels, measurement error can arise
from limitations in the measurement technique or laboratory assay. In addition, because the
exposure of intetest is usually a subject’s underlying long-term average value rather than
the level at any single point in time, intrinsic ﬁuctuatioﬂé in the variable over time can also
contribute to measurement error.

When the error is random and non-differential with respect to case-control status, it is well
known that estimates of relative risk based on the mis-measured exposure will be attenuated.
In order to minimize the effects of measurement error, many investigators advocate collecting
repeated measurements of the exposure on all subjects and using the individual’s average
value (1). However, as noted by Rosner et al (2), even when the mean of several replicates is
substituted for a single measurement, attenuation of relative risks may still occur, especially
when the degree of measurement error is large and the average is based on only a few repeats.

Methods for correcting estimates of relative risk for measurement error have been pro-
posed in a number of epidemiologic and statistical papers (3,4). The most common method
involves correcting the “naive” relative risk estimate based on the observed exposure by the
expected amount of bias. In the case of logistic regression, the regression parameter will be
attenuated by the factor, R, which is equal to the reliability coefficient of the mis-measured
exposure (1, 2). Therefore, one can multiply the biased estimate of the regression coefficient
by the inverse of the reliability coefficient to obtain the corrected estimate. This method,
however, is dependent on the assumption that the reliability of the exposure measurement
is the same for all subjects. When the average of several replicates is used as the measure
of exposure, this condition will be met only if all subjects have an equal number of repeated
measurements, given the degree of measurement error associated with a single measurement

is the same for all subjects.
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In studies in which the exposure is measured on repeated occasions, however, subjects
often have a variable number of measurements because of missing data. For example, the data
that are utilized to illustrate the methods in this paper are derived from a nested case-control
study of serum hormonal levels and breast cancer from the NYU Women’s Health Study (5).
The study cohort consists of 14,275 women who donated multiple blood samples over time
and have been followed since enrollment for the development of breast cancer. Most women
have donated one or two samples; however, many have also donated three or more. Because
subjects with a larger number of multiple blood samples have a more reliable estimate of their
true underlying serum hormonal levels than those with fewer measurements, the reliability
of the measured exposure will not be constant across individuals. Consequently, the usual
procedure for correcting for measurement error cannot be applied.

Liu and Liang (6) proposed an estimating equation approach for obtaining consistent
estimates of logistic regression parameters when all subjects have the same number of re-
peated imprecise exposure measurements, which in principle could be extended to the more
complicated situation when the number of replicates is variable between subjects. In this
paper, we discuss an alternative method for correcting for measurement error in the analysis
of matched case-control data when subjects have a variable number of repeated exposure
measurements and the individual’s average is used as the measure of exposure. The tech-
nique, which assumes that both the true exposure and the measurement error are normally
distributed, involves multiplying each subject’s observed average by the reliability of the
average prior to fitting the logistic regression model. The resulting logistic regression coef-
ficient based on the transformed average is corrected for measurement error. A bootstrap
algorithm for obtaining confidence intervals for the regression parameter which takes into

account the variability due to estimation of the reliability coefficient is also proposed.




~D

| 2 Methods

Measurement Error Model and Correction of Logistic Regression Parameter

The methods described below are based on the measurement error model of Armstrong
et al (7) for matched case-control studies. We assume that in each matching stratum, a case
is matched to a variable numbe:r of controls. However, the techniques are generalizable to
the unmatched design by assuming that there is only one matching stratum.

Let z;; denote the unobserved true value of the exposure variable for the k% subject with
case/control status j (0 = control, 1 = case), in stratum ¢ (i = 1,..., M). Assume that z;;;
is normally distributed with méan, i + 76, and variance o2. In addition, let z;j;; denote the
It observed value of z;;;, measured with error, for I = 1,...,njk. We assume the following
classical errors-iri-;}ariables model: | ' '

Zijkl = Tijk T €ijkly
where the error term, e;jy, is independent of z;;; and e;;p, for 1 # 1, and normally dis-
tributed with mean 0 and variance, 2. It follows that the observed z;jx in stratum ¢ are
normally distributed with means p; + 6 and g; for cases and controls, respectively, and com-
mon variance, 02 + o2. The variance component, o2, can be interpreted as the variance of
the true exposure, after stratifying by matching stratum and case/control status, and o2 as
the variance due to measurement error.

With these assumptions and the application of Bayes’ Rule, Armstrong et al (7) showed
that the probability that a study subject is a ca,sé, conditional on %,, the observed average

based on n measurements, and membership in stratum ¢, is a logistic function:

o exploy + AR.Z,)
Pr(D = 1|z,;1) = 1 +_exp(a,- + BR.z,)’ Y
where
L '
Rn = o2+ o?fn ?
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is the reliability of Z, as a measure of z. When no measurement error is present, 2z, = z, the

reliability coefficient is equal to 1, and (1) reduces to:

o explost B)
Pr(D = 1]z;1) = T+ explas + fa)’

Thus, an estimate of the logistic regression coefficient based on Z, will estimate the “naive”
coefficient, * = BR,, rather than the true 8. Because the reliability coefficient is between
0 and 1, the “naive” B* will be attenuated relative to 3. We can see from (2), however, that
as the number of repeated measurements ihcreas&s, the reliability coefficient approaches 1,
and the corresponding attenuation in 8 will diminish.

When all subjects have the same number of n repeated measurements, an estimate of
the true regression coefficient can be obtained by fitting the logistic model using z, for each
subject’s éxposure measurement, and multiplying the resulting coefficient estimate, B, by
1/R,. If subjects have a variable number of measurements, however, this approach cannot
be applied, since the reliability of the exposure variable is no longer constant for all subjects,
but depends on the number of available repeated measurements.

For the case where the reliability of the exposure differs across subjects, a corrected
estimate of the regression coefficient may be obtained by multiplying each subject’s average
exposure measurement by the reiia.bility of the average, prior to model fitting. That is,
if the k** subject in stratum i has the observed average Z;;x., based on n;j; approximate
measurements of z;;, then replacing the unknown z;j; in the conditional logistic model
with the tra;nsformed average, R, ., Z., where R, . is calculated from (2), will yield an
estimate of the true B. Since the reliability increases with the number of measurements,
this transformation results in greater “shrinkage” of averages based on a small number of
repeats, and less shrinkage of more informative averages based on many repeats.

When all subjects within the same matched set have the same number of repeats, this
method is equivalent to the two-stage approach proposed by Thomas et al (4) and Whitte-

more (8) for error correction in linear models, in which E(z;;k|Zijk.) is computed and then
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used as the exposure in the usual regression model. Given the model assumptions described
above, E(z;;k|Zik.) = Rn‘.jki,-jk_-i-(l —Rnijk)E(m;jk). If n;;), is constant for all subjects in stra-
tum ¢, the (1 — Ry, )E(zi;x) term is absorbed in the intercept term and does not affect the
estimate of the slope parameter in the logistic regression model. Thus, utilizing E(z;x|Zijk.)
or R, Zj. will yield equivalent estimates of the true regression parameter. Furthermore,
when all subjects in the study have the same number of n repeats, this technique will re-
sult in a corrected estimate of the logistic regression coefficient that is identical to the one
obtained by correcting the naive estimate by 1/R,.

Although fitting the logistic model to the transformed covariate will result in an unbiased
estimate of B, the corresponding variance of ﬂwill be underestimated unless the variance
components in the reliabilif.y coefficient are known. Usually, however, the variance compo-
nents are estimated from a separate reliability substudy or from subjects in the main study.
In our setting, repeated measurements are assumed to be available on all or a subset of the
main study participants. Thus, we can estimate the variance components, o2 and o2, from
the main study data by fitting the following mixed effects analysis of variance model to data

“on all cases and controls:
Zijkt = pi + 65 + Yijk + €ijnl, (3)

where 2;;x; is defined as before, p; is the effect for stratum i, §; is the effect due to case /control

2

status, 7;;x is a normally distributed random subject effect with mean 0 and variance o7,

and ¢;; is the residual error which is normally distributed with mean 0 and variance a2,
The variance components, o2 and o2, can be estimated using one of several methods,
including traditional analysis of variance (ANOVA), maximum likelihood, or restricted.ma,x-
imum likelihood methods. The ANOVA method, available in the SAS procedure, PROC
GLM, was used in our example because it is computationally simpler than the others, which
is an important consideration when implementing the bootstrap procedure described in the

next section for generating confidence intervals. However, this technique can lead to negative
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variance estimates. The ML or REML estimators, which are available from PROC MIXED
in SAS, do not have this limitation. For further details about the different estimation tech-
niques, se¢ Searle, Casella and McCulloch (9). -

The steps involved in obtaining an estimate of the logistic regression coefficient corrected

for measurement error can be summarized as follows:

1. Estimate the variance components, o2 and o2, by fitting the mixed effects analysis of

variance model in (3) to the study data.
2. Multiply each subject’s average exposure by R,, i = G2[(82 + 62 [nijr)-

3. Estimate the true logistic regression coefficient, 8, by fitting a conditional logistic

regression model to the transformed averages.

Because the technique is based on assuming that the true exposure and measurement error
are normally distributed, suitable data transformations should be applied when the distri-
butioné deviate from normality. .Note, however, that a data transformation such as the
log-transform will result in a model in which the log odds of disease is a linear function of

the exposure measured on the log, rather than the original scale.
Bootstrap Method for Obtaining Confidence Intervals

The width of the usual 95% confidence interval for the true f based on the transformed
covariate will be too narrow because the interval does not account for the extra variability
_associated with estimation of the variance components in R,. Rosner et al. (2) have derived
the asymptotic variance and corresponding confidence intervals of the corrected logistic re-
gression parameter which includes the uncertainty of the variance estimates for use in cohort
studies under a rare disease assumption. Their method, however is applicable only when

all subjects in the main study have the same number of repeats. For the situation when
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subjects in a matched case-control study have a variable number of replicates, we propose

the following bootstrap algorithm for obtaining confidence intervals for the true 3:

1. Aséuming there are M matched sets in the main study, generate a bootstrap sample
using the matching stratum as the sampling unit, and sampling M matched sets with
replacement from the main study data. For each matched set that is selected, the
sample contains all the subjects within the matched set, along with each subject’s

case/control status and repeated measurements.

2. Using the bootstrap sample, estimate o2, 02, and the true 8 by following the 3-step

approach outlined in the previous section.

3. Repeat (1) and (2) 1,000 times, which is the approximate minimum number of boot-

straps necessary to compute bias-corrected confidence lumts (10).

In constructing a bootstrap sample from the main study data, sampling occurs at the level
of the matching stratum since the matching between the cases and the controls needs to be
preserved. If the number of controls matched to each case is variable across strata, one can
sample the strata according to the number of subjects in each matched set, in order to keep
the total sample size constant for each bootstrap iteration. For example, one samples with
replacement M, matched sets from the M, sets in the main study with 2 controls per case,
Mj sets from the strata with 3 controls per case, etc...

The simple (1 — @)% confidence interval can be constructed using the a/2 and (1 — «/2)
percentiles of the bootstrap distribution. Bias-corrected confidence intervals should be used
when the bootstrap distribution of 8 is asymmetric and when the sample size is small (10).
We report only the bias-corrected conﬁdénce intervals in this paper.

Thus far, our focus has been on correcting for measurement error in a single exposure

variable, in the absence of confounders. However, the methods can also be generalized to the

14




multi-covariate situation, where the confounders, in addition to the primary exposure vari-
able, may be measured with error. A brief outline of the methods is given in the Appendix.
Additional details on the measurement error model and estimation of variance components

are also described in Armstrong et al (7).

3 Example

The primary aim of the NYU Women’s Health Study is to determine whether serum levels of -
endogenous hormones, such as estradiol, are associated with risk of breast cancer. Between
March 1985 and June 1991, a cohort-of 14,275 healthy women aged 34-65 years were enrolled
at the Guttman Breast Diagnostic Institute, New York. At the time of enrollment and at
annual screening visits thereafter, women were asked to donate blood and complete a self-
administered questionnaire. Serum samples were frozen and stored for future biological
assays. Subsequent cases of breast cancer were identified primarily through active follow-up
and confirmed by reviewing medical and pathological records. In this example, only the
women who were post-menopausal at enrollment (49%) were included.

In order to limit the costs associated wifch measuring hormone levels in the cohort, a
nested case-control study design was used. For each incident case of breast cancer, indi-
vidually matched controls were selected at random from the risk set consisting of all cohort
members alive and free of breast cancer at the time of diagnosis of the case, and who matched
the case on menopausal status at entry, age ;1.1; entry, and number and approximate dates of
blood donations up to the date of diagnosis in the case. For additional details of the study
design, see Toniolo et al (5).

The goal of this example is to evaluate the effect of random measurement error on the
associations between total, % free, and % bound to sex hormone binding globulin (SHBG-
bound) estradiol levels and risk of breast cancer, when the average of all the available re-

peated measurements for a subject is used as her exposure. The associations between the
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baseline measurements of the total, % free, and % SHBG-bound estradiol levels and risk of
breast cancer among post-menopausal women, unadjusted for measurement error, were eval-
uated by Toniolo et al (11). Total and % free estradiol were found to be positively associated
with risk of breast cancer, whereas % SHGB-bound estradiol had a strong protective effect.

One of the assumptions of the measurement error model is that the true and observed
exposure variables are normally distributed. The distribution of total estradiol levels was
skewed, so the logarithm of the values were used. Based on data from both post-menopausal
cases and controls, we estimated the reliability coefficients for total, % free and % SHBG-
" bound estradiol, adjusted for matching stratum and case/control status, as: .48, .68, and
.92, respectively (Table 1). (These estimates were somewhat lower than those published
by Toniolo et al (12): .51, .77, and .94 for total, % free and % SHBG-bound estradiol,
respectively, which were based on data from only the post-menopausal controls in the NYU
Women'’s Health Study.) The estimates of the reliability coefficients indicate that the degree
of measurement error in total and % free estradiol may be sufficiently large to attenuate
observed relationships with risk of breast cancer.

The main case-control study sample consisted of 381 subjects stratified into 130 matched
sets. Ten matched sets had 1 control per case, 119 sets had 2 controls per case, and one set
had 3 controls per case. Of the 381 subjects in the main study, 157 (41%) had 2 or more
repeated measurements: 98 subjects had 2 replicates, 53 had 3 replicates, and 6 subjects
had 4.

We invesfigatéd the effects of measurement error on the observed associations between
each exposure variable and risk of breast cancer by comparing the estimated logistic re-
gression parameters based on the first measurement of the exposure for each subject, the
aver:«ige of the replicate measures, and the transformed (corrected) average value. Corre-
sponding odds ratios were calculated from the regression estimates by comparing women
in the 90" versus 10* percentiles of the observed distributions (i.e., 63.0 vs 14.5 for total

estradiol, 1.7 vs. 1.04 for % free, and 57.6 vs 27.3 for % SHBG-bound estradiol).
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The bootstrap confidence intervals were generated using the SAS macro facility to create
the bootstrap sample, in conjunction with PROC PHREG, which fits conditional logistic
regression models. All analyses were run on a DEC 3000/700 AXP computer workstation.

The results are provided in Table 2. For total estradiol and % free estradiol, the uncor-
rected analyses show that using the observed average of the repeated measurements results
in a minor increase in the regression coefficient estimates compared with using only the
baseline measurement. On the other hand, the estimated regression coefficients corrected
for measurement error using the transformed averages are substantially larger than the es-
timates based on the observed averages for both variables: increases are 74% and 40% for
total and %free estradiol, respectively.

The effect of measurement error on the estimated odds ratios is especially striking. When
comparing women in the 90th percentile versus the 10th percentile of the observed total
estradiol distribution, the corrected odds ratio was estimated to be 7.16, compared with
uncorrected: odds ratios of 2.64 and 3.10 using the baseline and untransformed average,
respectively. Similarly, the corrected odds ratio for % free estradiol was 4.95, compared with
3.07 for the baseline measurement and 3.13 for the average value.

This illustrates how using the observed average of replicate measurements of exposure
for each subject may not be sufficient to offset the effects of measurement error when the
degree of error is large and when subjects have only a few replicates, and that additional
error correction procedures may be necessary. In the case of total estradiol, one would need
to take the average of 10 replicate measurements to improve the reliability to .90, based
on the estimated variance components in Table 1. For % free estradiol, one would ﬁeed 5
measurements. Thus, it is not surprising that using the average value in our example did not

appreciably deattenuate the corresponding regression coefficient, since only 41% of the study

subjects had replicate measurements, and among these, most had only 2 or 3 measurements.

Using the average resulted in a 17% increase in the regression coefficient for total estradiol,

relative to using the first measurement. In comparison, if all subjects had 2 replicates, the
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expected increase in the regression coefficient would be (R~ R;)/R; = (.65—.48)/.48 = 37%
over the estimate based on 1 measurement. On the other hand, because % SHGB-bound
estradiol levels are highly reproducible, the logistic regression estimates and corresponding
odds ratios using the corrected average were not very different from the uncorrected analyses.
Since 119 (92%) of the 130 matched sets had 2 controls matched per case, implementation
of a more complex stratified bootstrap sampling scheme, which would keep the total number
of subjects constant for each iteration, was not warranted. As one would expect, the bias-
corrected bootstrap confidence intervals based on the transformed average, as shown in Table
2, are shifted further away from 0 and are wider than the uncorrected confidence intervals
for all variables, since the bootstrap method accounts for the variation due to estimation of
the variance components in the reliability coefficient. When the variation in the estimates
of variance components estimates was ignored, the simple 95% confidence intervals based on
the corrected average were estimated to be: (.54, 2;13); (1.02, 3.82), and (-.074, -.025) for
total, % free, and % SHBG-bound estradiol, respectively. Thus, ignoring the extra source of
variation from R, i« underestimated the width of the confidence interval by as much as 17%

(for total estradiol) in our data set.

4 Conclusions

In most reliability studies, the within-subject or error variance of the exposure is estimated
from an external population or from a random subset of the main study population from
whom repeated measurements are obtained, and one must assume that the resulting estimate
is generalizable to the main study population. In our example, the within-subject variances
were estimated from the subjects in the main study with at least two repeated hormone
measurements. Women with repeated measurements, however, may be different from those
with only one measurement. Because blood samples in the NYU Womeﬁ’s Health Study

were obtained at annual breast cancer screening visits, women with a family history of breast

18




cancer, for example, or those who are more health conscious, may have been more likely to
return for subsequent visits. It is unlikely, though, that this would result in a systematic
difference in the within-subject variability of the hormone levels between the subset with
repeats and those who had only one measurement. Thus, we can assume generalizability of
the estimated within-subject variance to all subjects in our main study.

A second assumption of our error-correction method is that a subject’s measurements are
distributed randomly around the unobserved true value, and that levels of the exposure are
not changing systematically over time. This assumption may not be true if hormone levels
decrease with age. In addition, for breast cancer cases, hormone levels could be influenced
by the development of disease so that measurerﬁents obtained closer to the date of diagnosis
may exhibit ‘a systematic time trend. Among subjects in the NYU Women’s Health Study,
however, a trend in estradiol levels over time was not observed in preliminary analyses using
linear regression techniques (results not shown).

We have also assumed that the variance components, o2 and ¢2, are homogeneous across
strata and case/control status. The within-subject variance for total estradiol was estimated
as .16 and .18 for cases and controls, respectively, indicating that the error variances are
similar for the two groups. Because only one case was included in each stratum, we could not
evaluate whether o2 was constant for cases and controls. Furthermore, assessing whether o?
was homogeneous across strata was not possible, given that most strata had only 2 controls.

The error-correction methods in this paper are applicable to studies in which a variable
number of repeated measurements of exposure are obtained on subjects, and the average

of each subject’s measurements is used as the exposure variable. In principle, a corrected

- estimate of the logistic regression coefficient could also be obtained by utilizing only the

first measurement of exposure for each subject, and correcting the resulting estimate by the
reliability of a single measure. Although this method is much simpler than using all the
available repeated measurements and applying the techniques proposed in this paper, the

estimate based on a single measurement will not be as efficient. For example, the 95% bias-
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corrected bootstrap confidence interval for the true 8 using only the first measurements of
total estradiol was (.52, 2.73), which is wider by 19% than the corresponding interval based
on the transformed averages. |

Haukka (13) proposed a similar bootstrap method for correcting for measurement error
in generalized linear models for the situation when the “gold standard” is known for the
exposure measurement and validation, as opposed to reproducibility, data are available.
When compared with the correction method for logistic regression proposed by Rosner et
al (14) which also takes into account the variability in R, the bootstrap method was found
to yield wider confidence intervals for peaked and skewed measurement error distributions.
As discussed by Haukka (13), this differénoe may result because the bootstrap method takes
better account of the measurement error variance, whereas the Rosner et al. (14) method
is ba;ed on a first-order Taylor series approximation, which may not adequately correct
confidence intervals when the error variance is large.

We have shown that in situations when the magnifude of measurement error is large and
subjects have only a few repeats, using the average of the available replicate measurements
for each subject may not be sufficient to adjust for the measurement error. The methods
proposed in this paper can be applied to provide additional correction procedures in the
analysis of case-control data where subjects have a variable number of repeated measures of
the exposure. The advantage of our algorithm is that it is conceptually straightforward and
relatively easy to implement, especially with the amount of computing power that is now

readily available to most investigators.
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Table 1: Reproducibility of Total, %Free, and %ASHBG-Bound Estradiol, Adjusted
for Case/Control Status and Matching Stratum

Within-Subject Between-Subject Reliability

Hormone Variance Variance Coefficient
Estradiol 0.17 0.16 ‘ 0.48
% Free Estradiol 0.017 0.036 0.68

% SHBG-Bound Estradiol 9.38 104.45 o 0.92




Table 2: Corrected and Uncorrected Logistic Regression Parameter Estimates, Con-
fidence Intervals, and Odds Ratios for the Associations of Total, % Free, and %
SHBG-bound Estradiol Level and Risk of Breast Cancer

Exposure Variable Regression Coefficient 95%C.1} Odds Ratio*
Total Estradiol'
First measurement 0.66 (0.24 - 1.09) 2.64
Average 0.77 (0.32 - 1.22) 3.10
Transformed average 1.34 (0.61 - 2.47) 7.16
% Free Estradiol | »
First measurement 1.70 (0.69 - 2.71) 3.07
Average 1.73 (0.70 - 2.77) 3.13
Transformed average 2.42 (1.06 - 4.00) 4.95
% SHBG-Bound Estradiol
First measurement -0.046 (-0.068 - -0.024) 0.25 -
Average -0.045 (-0.067 - -0.023)  0.26
Transformed average -0.048 (-0.074 - -0.025) 0.24

* Comparing women at 90 vs. 10?* percentile of observed distribution

t Total estradiol measurements were log-transformed

* 95% C.I. using transformed average based on bias-corrected bootstrap estimate




Appendix

In order to generalize the techniques to the multivariate situation, assume that x;; denotes
a (p x 1) vector of true covariates for the j* subject in stratum ¢, and that it follows
a multivariate normal distribution with mean vector p; + A for the cases and u; for the

controls, and covariance matrix ¥. In addition, let
Zijk = Xij + €k

denote the k™ observed measurement of x;;, for k = 1,...n;;, where the e;; are independent
and identically distributed according to a multivariate normal distribution with covariance
matrix, 2.

Under these assumptions, Armstrong et al (7) showed that the probability a subject is
a case, conditional on the mean of n repeated observations of the covariate vectors, is equal
to the following logistic function:

exp(a; + 2.A,8)
1 + exp(ai + znAnIB) ’

Pr(D = 1[2,,i) =

where Z, = (7=, 2k)/n, A, = (E4+n71Q)71%, and B is the (px 1) vector of logistic regression
parameters.

When subjects have a variable number of replicate measures of the exposure variables, it
follows that as in the single covariate case, one can transform the observed mean covariate
vector for each subject by multiplying the vector by an estimate of thg matrix, Ay,;, and
then fitting the usual logistic regression model to the transformed covariates to obtain the
corrected logistic regression coefficients for all covariates. A bootstrap algorithm analogous
to that for the single covariate case could be used to obtain corrected confidence intervals
which take into account the variation due to estimation of A,,;, but the method could become
very computationally intensive with a large number of confounders, since more complicated

multivariate MANOVA models would be needed to estimate ¥ and . For the special
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case when tl}e confounders are measured without error, however, estimation of the variance
components is greatly simplified (see Kim et al (15)), and the bootstrap method can be more

easily applied.
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Chapter II

Relation of Serum Testosterone and Dehy-
droepiandrosterone Sulfate with Risk of Breast

Cancer in Postmenopausal Women




1 Introduction

A possible role of androgens in the development of breast cancer in postmenopausal women
was first suggested by Grattarola et al. (1974). Mechanisms by which androgens may
increase breast cancer risk were reviewed by Secreto et al. (1991, 1994) and Bernstein and
Ross (1993). Androgens may act directly, by stimulating breast cell proliferation through
binding to androgen receptors or by stimulating the synthesis of growth factors inside the
breast epithelium. Androgens may also act indirectly through their conversion to estrogens,
which are known to stimulate breast cell proliferation (Henderson et al., 1993): aromatization
of androstenedione and testosterone in peripheral tissues is the main source of estrogens in
postmenopausal women. In addition, it is well established that testosterone binds to sex-
hormone binding globulin (SHBG) with greater affinity than estradiol. Testosterone may
thus indirectly increase the risk of breast cancer by decreasing the fraction of estradiol
bound to SHBG and thereby increasing the nonbound fraction, which is thought to be the
fraction available to breast cells (Siiteri et~a1., 1981). Finally; it has been suggested that
testosterone inhibits hepatic secretion of SHBG (Lonning et al., 1995), which could also
result in a decreased fraction of estradiol bound to SHBG.

Several case-control studies have reported on the association of plasma or serum levels of
testosterone with risk of breast cancer in postmenopausal women. Most (McFadyen et al.,
1976; Adami et al., 1979; Secreto et al. 1983; Hill et al.; 1985; Secreto et al., 1991; Bruning
et al., unpublished data) although not all (Malarkey et al., 1977) observed higher levels of
testosterone in cases than in controls. Among the three prospective studies which examined
the relation of serum levels of testosterone with risk of postmenopausal breast cancer, one
found a significant positive association (Berrino et al;, 1996), one found a non-significant
positive association (Wysowski et al., 1987) and the third reported no association (Garland
et al., 1992).

Dehydroepiandrosterone (DHEA) is the androgen produced by the adrenal in largest
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quantity. The physiological roles of DHEA and of its sulfate (DHEAS), which is thought
to be produced exclusively by the adrenal cortex (Vermeulen, 1983), are unknown. They
are considered weak androgens, but also appear to have estrogenic properties (Seymour-
Munn and Adams, 1983). It has been proposed that DHEA and DHEAS protect against
breast cancer in premenopausal women, but increase breast cancer risk in postmenopausal
women (Bulbrook, 1971; Seymour-Munn and Adams,1983). These conflicting actions could
be reconciled by a recent hypothesis: in premenopausal women, DHEA would have an antie-
strogenic effect by binding competitively to estrogen receptors, whereas, in postmenopausal
women, DHEA would bind to vacant estrogen receptors and enhance estradiol-like effects,
thereby stimulating tumor growth (Ebeling and Koivisto, 1994).

Results from case-control studies of DHEA and DHEAS conducted in postmenopausal

- women have been mixed (Zumoff et al., 1981; Jones and James, 1987; Bernstein et al., 1990;

Secreto et al., 1991). The three prospective cohort studies which examined the rela.tionshib
of testosterone with breast cancer risk in postmenopausal women also measured DHEAS: one
study (Barrett-Connor et al., 1990) reported no association whereas the two others (Gordon
et al., 1990; Berrino, 1996) observed a non-significant positive association.

We report here on the relation between postmenopausal serum levels of testosterone
and DHEAS and subsequent risk of breast cancer in a case-control study nested within a
prospective cohort, the New York University (NYU) Women’s Health Study. We previously
reported a positive association between postmenopausal serum fractions of bioavailable es-
trogens and risk of breast cancer in this study population (Toniolo et al., 1995). A specific
objective of our analysis was to examine whether serum levels of androgens have an effect on
breast cancer risk independent of their influence on serum levels and biological availability

of estrogens.
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2 Methods

The NYU Women’s Health Study cohort

Between March 1985 and June 1991, the NYU Women’s Hezﬂth Study enrolled a cohort
of 14,275 women, 34 to 65 years old, at the Guttman Breast Diagnostic Institute, a breast
cancer screening center in New York City. Details concerning subject recruitment have
been published elsewhere (Toniolo et al., 1991; Tq_giold et al., 1995). The current report is
" limited to the 7054 cohort members who were p;)stmenopa,usal at the time of enrollment.
Participants were classified as postmenopausal if they reported: (a) no menstrual cycles
during the preceding 6 months, or (b) a total bilateral oophorectomy, or (c) a hysterectomy
without complete oophorectomy prior to natural menopause and were 52 years of age or older.
Cohort members donated 30 mL of blood and completed a self-administered questionnaire
at enrollment. Blood was drawn prior to breast examination, between 9 A.M. and 3 P.M. in
nonfasting women. After centrifugation, serum samples were immediately stored at —80°C
for subsequent biochemical analyses. Women who had taken hormonal medications in the 6

months preceding their visit were not eligible.
Nested case-control study

Cases of breast adenocarcinoma were identified primarily through active follow-up of the
cohort and were confirmed by review of individual clinical and pathology records (Toniolo
et al., 1995). For each case diagnosed in a woman who was postmenopausal at enrollment,
two controls were selected at random from the risk set of women who were alive and free of
disease at the time of diagnosis of the case, and who matched the case on agé at enrollment
(26 months), date of initial blood donation (£3 months) and menopausal status. As of

October 1991, 130 members of the postmenopausal cohort had been identified who had
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received a diagnosis of breast cancer prior to January 1, 1991. Serum assays of follicle-
stimulating hormone (FSH) were conducted to confirm the postmenopausal status of all the
cases and their selected controls: three controls, who had reported the absence of menstrual
cycles in the six months prior to enrollment, had FSH levels below17.5 IU/L, which was
less than the minimal level compatible with postmenopausal status for our assay. They
were nonetheless included in the analysis, since excluding them did not materially affect
risk estimates. Estrogen assays (total estradiol, percent estradiol free, and percent estradiol
bound to SHBG), were performed for all matched sets. For logistical reasons, androgen assays
were carried out in a subset of 118 matched sets. Excluded from the analyses reported here
are thirty-three matched sets for whom diagnosis of the case occurred 6 months or less after
blood donation, 6 controls who reported treatment with corticosteroids in the 6 months prior
to blood donation, and 1 control whose estrogen assays were done on a different day than
the matching case. As a result, 85 cases (83 invasive and 2 noninvasive intraductal) and 163

controls are included in the present report.
Laboratory methods

For androgen assays, serum samples that had not been previously defrosted were shipped
in dry ice to the Netherlands Cancer Institute and analyzed in two batches. Samples from
a case and her matched controls were always analyzed in the same batch. All assays were
performed ig duplicate with the laboratory personnel blinded to the case or control status of
the samples. Reference sera were included for each assay in several places within each batch.

Total testosterone was measured by a solid-phase radioimmunoassay (Coat-A-Count;
Diagnostic Products Corp., Los Angeles, CA.) not requiring extraction or chromatography.
The mean intra-assay coefficient of variation in the range of measurement was 6.2%. The
inter-assay coefficients of variation were respectively 11% at 1.67, 2.2% at 10.00 and 7.0% at
22.05 nmol/L.
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DHEAS was measured directly in diluted serum as we have reported previously (Bruning
et al., 1984) using an antiserum against DHEA which showed a 42% crossreactivity with
DHEAS. As DHEA was present in serum in concentrations at least 10 times lower than
DHEAS, it had a negligible influence on the DHEAS values, which were read from a DHEAS
standard plot. The mean intra-assay coefficient of variation in the range of measurement
was 3.3%. The inter-assay coefficients of variation were respectively 10% at 1.68, 9% at 2.97,
10% at 5.51 and 8% at 15.18 (umol/L).

Total estradiol was measured by standard radioimmunoassay (Pantex, Inc., Santa Mon-
ica, Calif.). Percent estradiol bound to SHBG and percent estradiol free were measured with
a concanavalin A-Sepharose binding and an ultrafiltration method, respectively, as reported

previously (Toniolo et al., 1995).
Statistical methods

When treated as continuous, total estradiol, testosterone and DHEAS were loge-transformed
to reduce departures from the normal distribution. The paired t-test was used to compare
hormone levels of the cases to the mean hormone levels of their matched controls.

To compute odds ratios, hormonal measurements were categorized into quartiles, using
the frequency distribution of the cases and the controls combined. Since the androgen assays
were performed in two batches, quartile cut-points were calculated separately for each batch.
The weighted averages of the cut-points are reported in the tables.

The data were analyzed using conditional logistic regression (Breslow and Day, 1980).
Odds ratios were computed relative to the lowest quartile. Regression analyses were also
performed on thé continuous hormonal variables. Likelihood ratio tests were used to assess
the statistical significance of overall associations, linear trends and deviations from linearity.
All p-values are two-sided.

One objective of the analysis was to examine concurrently the effect of androgens and
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estrogens. Therefore, we report on the effect of adding androgen variables to models contain-
ing estrogen variables, and vice-versa. When adding estrogen variables to models containing
androgen variables, percent SHBG-bound estrogen was entered first because it was the estro-
gen variable most strongly associated with breast cancer risk in multivariate models (Toniolo
et al., 1995).

Hormone levels in this study were assessed from a single blood donation. For some
hormones, however, a single measurement may not provide a reliable estimate of a woman’s
long-term average level, the exposure of interest, because of intrinsic fluctuations in the -
hormone over time and laboratory measurement error. In addition, different hormones are
measured with varying amounts of error. For example, the reliability coefficients of total
estradiol, percent estradiol bound to SHBG, and DHEAS, were estimated to be 0.51, 0.94,
and 0.75, respectively, in our study population (Toniolo et al., 1994). The reliability of
testosterone was not assessed in our study but estimates from the literature range from
0.74 (Micheli et al., 1991) to 0.88 (Hankinson et al., 1995). We were concerned that these
differences might distort our results regarding the relative importance of the hormones. We
therefore applied the method of Armstrong et al. (1989) for correcting logistic regression
parameter estimates of continuous variables for measurement error in case-control data.
For total estradiol, percent estradiol bound to SHBG, and DHEAS, we used within-subject
variances which we had previously estimated (Toniolo et al., 1994). For testosterone, we used
the within-subject variance estimate provided by Hankinson et al. (personal communication,
1996). We assumed that the different hormonal variables had independent measurement
€rrors.

We examined the effect of Quetelet index (weight (kg) / height (m?)) on the androgen-
breast cancer associations, since the rate of conversion of androgens to estrogens increases
with Quetelet index (Siiteri et al., 1973), and since the known positive association of Quetelet
index with risk of breast cancer was confirmed in our data (Toniolo et al.,1995). The effect

of other known risk factors (age at menarche, parity, age at first full-term pregnancy, age
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at menopause, history of breast cancer in a first-degree relative, history of a benign breast
condition, history of total oophorectomy, lifetime months of lactation and smoking history)
on the androgen-breast cancer associations was also examined in multivariate conditional -
logistic analyses. The inclusion of covariates other than Quetelet index in the statistical
analyses did not materially affect the results and are therefore not presented. In addition,
the exclusion from the analysis of the 6 cases and 13 controls who had a total oophorectomy
prior to enrollment in the study had no material impact on the results (data not shown).

Results are therefore presented including these patients.

3 Results

Some characteristics of the study group are given in table 1. The median age at diagnosis of -
breast cancer was 61.6 years and the median duration between blood donation and diagnosis
was 2.7 years (range 0.5 to 5.5 years). Known breast cancer risk factors had a similar
distribution in this group as in the larger group on which estrogen assays were carried out
(Toniolo et al., 1995). There were no appreciable differences between cases and controls in
age at menarche, parity, age at menopause and history of prior oophorectomy. Delayed first
full-term pregnancy, history of breast cancer in at least one first degree relative 45 years old
or younger and history of a benign breast condition were associated with a non-significant
increase in risk of breast cancer, while a history of breast-feeding was associated with a non-
significant protective effect. The median weight and median Quetelet index were significantly
higher in cases than in controls.

Table 2 shows the geometric mean levels of testosterone and DHEAS for cases and con-
trols. The rr;ea.n testosterone level was 21% higher in cases than in controls (p < 0.01) and
the mean DHEAS level was 20% higher (p = 0.10).

Table 3 reports odds ratios for the association between breast cancer and serum levels of

testosterone, total estradiol and percent estradiol bound to SHBG. In univariate analyses,
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odds ratios showed a significant increase (p=0.02, test for trend) in risk of breast cancer with

increasing levels of testosterone: the odds ratios for the second, third and fourth quartiles
relative to the lowest quartile, were 2.4 (95% CI, 1.0-5.6), 3.5 (95% CI, 1.4-8.4) and 2.7 (95%
CI, 1.1-6.8), respectively. However, adjusting for percent SHBG-bound estradiol, which was
the estrogen variable most strongly associated with breast cancer risk, reduced the odds ra-
tios and removed the significant trend. The odds ratios were 1.5 (95% CI, 0.6-3.7), 2.0 (95%
CI, 0.7-5.2) and 1.3 (95% CI, 0.5-3.7) for second, third and fourth quartiles respectively.
Adding total estradiol to the model including testosterone and percent SHBG-bound estra-
diol did not significantly improve the fit of the model, although it further reduced the odds
ratios to 1.4 (95% CI, 0.6-3.5), 1.8 (95% CI, 0.7-5.0) and 1.2 (95% CI, 0.4-3.5) respectively.
Adding percent free estradiol or Quetelet index to the model containing testosterone, estra-
diol and percent estradiol bound to SHBG did not materially affect the odds ratios (data
not shown). A strong positive association between breast cancer risk and increasing levels
of total estradiol was also present in univariate analysis. This association remained signifi-
cant after adjusting for testosterone levels, although the odds ratios and the corresponding
p-value were somewhat reduced. The protective effect associated with increasing percentage
of SHBG-bound estradiol was hardly affected by adjustment for testosterone levels. In the
model including the 3 hormonal variables, only the percentage of estradiol bound to SHBG
remained significant. Analysis on continuous variables showed similar results.

Results of the analyses correcting for measurement error were similar to results of the
uncorrected analyses with respect to the relative strength of the associations of the hormonal
variables with breast cancer risk: the positive association of testosterone was weakened and
no longer significant after adjusting for percent SHBG-bound estradiol, whereas the positive
association of total estradiol became only marginally significant and the negative association
of percent SHBG-bound estradiol remained highly significant after adjusting for testosterone.
In the model including the three variables, only percent SHBG-bound estradiol remained

significant.
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Table 4 reports odds ratios for the association between breast cancer risk and increasing
levels of DHEAS. In unadjusted analyses, although the odds ratio in the highest quartile
was slightly elevated (1.6, 95% C.I: 0.7-3.5), there was no trend of increasing risk of breast
cancer with increasing levels of DHEAS. The inclusion of estrogen variables or of Quetelet
index did not result in a significant trend. The odds ratios for the association between breast
cancer risk and DHEAS are shown adjusting for percent SHBG-bound estradiol and total
estradiol. Inclusion of DHEAS in models containing estrogen variables did not materially
affect the associations between estrogen variables and breast cancer risk (data not shown).
Correcting for measurement error in the hormonal variables did not alter the results. -

Finally, analyses were conducted using only the 56 matched sets with at least two years
between blood donation and diagnosis of the case. The results were similar to the results of
analyses conducted in the larger group, both for testosterone and DHEAS (data not shown).

Table 5 reports the Spearman correlation coefficients for hormone levels and Quetelet
index, by case-control status. Note that testosterone was correlated positively with total
estradiol (rg = 0.23 in cases and 0.27 in controls) and negatively with percent estradiol

bound to SHBG (rs = —0.27 in cases and -0.33 in controls).

4 Conclusions

In unadjusted analyses (except for matching variables), we observed a statistically signif-
icant trend of increasing risk of breast cancer with increasing serum levels of testosterone
in postmenopausal women. Since all cases were diagnosed af least 6 months after blood
donation (median 2.7 years) and since a similar trend was observed when the analysis was
limited to the two-thirds of the cases diagnosed at least two years after blood donation, it
seems unlikely that the higher levels of testosterone observed in women who subsequently
developed the disease, compared with controls, fesulted from the presence of tumors.

Three previous prospective studies have examined the association between serum levels of
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testosterone and breast cancer risk in postmenopausal women. No association was observed
in the Rancho Bernardo, California, study, in which the age-adjusted mean testosterone level
was 258 pg/ml in 15 cases diagnosed at least 1 year after blood donation and 261 pg/ml in
400 noncases (Garland et al., 1992). However, results from the two other prospective studies
are consistent with ours. In the Washington County, Maryland, study, serum levels were
11% higher in 39 cases (mean 304 pg/ml) than in 155 controls (mean 274 pg/ml), although
this difference was not statistically significant (Wysowski et al., 1987). Finally, in 24 cases
diagnosed during the first 3.5 years of follow-up of a cohort of 4040 postmenopausal women
from northern Italy, the risk ratios for breast cancer associated with the second and third
tertiles of testosterone were 4.8 (95% CI 0.9-25.1) and 7.0 (95% CI 1.4-36.4), respectively (p
for trend = 0.026, Berrino et al., 1996).

We recently reported a positive association between bioavailable estrogens and. subse-
quent risk of breast cancer in a slightly larger group of postmenopausal women from thé
NYU Women’s Health Study (Toniolo et al., 1995). An objective of the present analysis was
to examine whether androgens had an effect on breast cancer risk that was independent of
their influence on serum levels and biological availability of estrogen. Results showed that,
after including estrogen variables (percent SHBG-bound estradiol and total estradiol) in our
statistical model, the odds ratios associated with higher levels of testosterone were consid-
erably reduced, and there was no longer a significant trend. A similar result was recently
observed in the re-analysis of a population-based case-control study conducted in Sweden
(Adami et al. 1979; Lipworth et al., 1996). Whereas in univariate analysis, a significant
positive association was found between testosterone and breast cancer risk, fhe association
disappeared after controlling for estrone (and androstenedione). On the other hand, Berrino
et al. (1996) did not observe a reduction of the association between breast cancer risk and
levels of testosterone when adjusting for total estradiol. However, multivariate analysis was
hampered by the small sample size of the study (24 cases).

We were concerned about the impact of measurement error in the hormonal variables on .
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our results. It is well known that in the absence of confounders, non-differential measurement
error in an exposure variable will result in an attenuation of the true exposure/disease
relationship. When several variables are measured with error, however, the associations of
these variables with disease in a multivariate model may be weaker or stronger than the true
associations (Armstrong et al., 1990). It is reassuring that, in our analysis, correcting for
measurement error did not affect the relative strength of the associations of the hormonal
variables with risk of breast cancer. _

Our results are consistent with the hypothesis that testosterone has an indirect effect
on breast cancer risk, through its association with estrogen levels. The fact that percent
SHBG-bound estradiol was the estrogen variable which caused the greatest reduction in
the testosterone-breast cancer odds ratios suggests that the effect of testosterone on the
bioavailability of estrogens may be more important than its role as a precursor of estrogens.
An increase in the serum levels of testosterone could lead to a decrease in the percentage
of estradiol bound to SHBG since testosterone binds to SHBG with greater affinity than
estradiol. However, the modeling studies performed by Dunn et al. (1981) as well as in
vitro experiments (Bonfrer et al., 1989) indicate that higher concentrations of testosterone
would be required to observe such an effect. Inhibition of the hepatic secretion of SHBG
by testbsteronc could also result in a decrease in percent SHBG-bound estradiol, since small
changes in SHBG concentration can produce an important reduction in the percentage of
hormone bound to this protein (Selby, 1990). In support of this hypothesis a moderate
negative correlation between testosterone and SHBG was reported by some (Haffner et al.,
1995; Lonning et al., 1995; Maggino et al., 1993) although not all (Lipworth, 1996) studies.

A limitation of our study is that only total testosterone was measured. The free and
albumin-bound hormone fractions might be more relevant biologically since these fractions
are thought to diffuse readily into the cells (Pardridge et al., 1981). Indeed, with regard to
estrogen, the variable most strongly related to risk of breast cancer was the percent SHBG-

bound estradiol which had a protective effect. Thus, we cannot exclude the possibility that .
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the free and albumin-bound fractions of testosterone might have an independent effect on
breast cancer risk.

The lack of an association between DHEAS and breast cancer observed here is consistent
with the results of the previous prospective studies which examined the role of this hormone
in postmenopausal women. Barrett-Connor et al. (1990) measured DHEAS levels in a cohort
of 534 women, 50 to 79 years old, among whom 21 subsequently developed breast cancer,
and reported no difference between cases and non-cases. In a case-control study nested
within a cohort of approximately 13,000 female residents of_ Washington County, Maryland,
Gordon et al. (1990) reported that serum levels of DHEA were significantly higher in 30
postmenopausal women who developed breast cancer 9 years or more after blood donation
than in 59 matched controls. However, no statistically significant difference in DHEAS

levels was observed, -although serum levels of DHEAS were slightly higher in the women

- who developed breast cancer than in the controls. Finally, an increase in the odds ratios for

breast cancer was observed with increasing serum levels of DHEAS in the ORDET study
but this trend was not statistically significant (Berrino et al., 1996). Overall, there is little
epidemiologic evidence that DHEAS plays an important role in breast cancer development
in postmenopausal women. |

In conclusion, elevated serum levels of testosterone were found to be associated with
subsequent risk of breast cancer in postmenopausal women. However, this association was
considerably reduced and no longer significant after taking into account the effect of serum
estrogen levels on breast cancer risk, suggesting that androgens act through their influence on
the availability of estrogens via SHBG binding and/or as precursors of estrogens. There was
no evidence that the adrenal androgen DHEAS plays a role in breast cancer development
in our study. In light of these results, additional research to identify factors influencing
testosterone levels in healthy postmenopausal women would be of interest. Among life-style
factors such as smoking, obesity, diet, alcohol consumption and exercise, only obesity has

been found to be marginally associated with higher levels of testosterone (Cauley et al., 1989;
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Newcomb et al., 1995).
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Table 1. Study group characteristics.

‘ Median (range) or percent

Cases (n=85) Controls (n=163)
Age at blood donation 59.2 (48.9-65.4) 59.1 (48.9-64.9)
Age at diagnosis 61.6 (52.2-68.6)
Age at menarche 13 (9-16) 13 (10-17)
No. of full-term pregnancies
0 24.7% 23.9%
1 17.6% 13.5%
>1 57.6% 62.6%
Age at first full-term pregnancy 25 (16-41) 24 (16-43)
Ever breast-feeding 20.8% 28.2%
Age at menopause 51.7 (31.6-57.2) 50.9 (24.9-58.6)
Breast cancer in first degree relative
<45 years old 8.2% 3.7%
Prior benign breast condition 57.7% 46.7%
Prior bilateral oophorectomy 7.0% 8.0%
Height, cm 162.6 (149.9-177.8) 162.6 (147.3-177.8)
Weight*** kg 70.3 (47.6-122.5) 62.6 (45.4-124.7)
Quetelet’s index***, kg/m> 26.1 (19.9-43.6) 24.0 (17.7-44.4)

*** p <0.001, paired t-test




Table 2. Geometric mean, geometric standard deviation and range of serum levels of
testosterone and DHEAS in breast cancer patients diagnosed at least 6 months after blood
donation, and their individually-matched controls.

Cases (n=85) Controls (n1=163)
Testosterone (nmol/L)
Mean** (S.D.) 1.05 (1.79) 0.87 (1.89)
Range 0.20-3.96 0.14-5.96
DHEAS (umol/L)
Mean* (S.D.) 2.36 (2.37) 1.96 (2.26)
Range 0.22-14.60 0.12-10.43

* p=0.10, paired t-test
** p <0.01, paired t-test




Table 3. Odds ratios for the association between breast cancer risk and serum levels of testosterone, total

estradiol and percent SHBG-bound estradiol.

Hormonal variable by

quartiles OR" (95% CI) OR? (95% CI) OR’® (95% CI)
Testosterone* _

1 1.0 1.0 1.0

2 2.4 (1.0-5.6) 1.5 (0.6-3.7) 1.4 (0.6-3.5)

3 3.5(1.4-84) 2.0(0.7-5.2) 1.8 (0.7-5.0)

4 2.7(1.1-6.8) 1.3 (0.5-3.7) 1.2 (0.4-3.5)

p for trend * N.S. N.S.

Total estradiol®

1 1.0 1.0 1.0

2 2.0 (0.8-5.3) 1.8 (0.7-4.8) 1.7 (0.6-4.7)

3 4.3 (1.8-10.4) 3.6 (1.4-9.0) 2.6(1.0-6.8)

4 3.8 (1.5-10.3) 2.9 (1.0-8.3) 1.6 (0.5-5.8)

p for trend *okk * N.S.

% SHBG-bound

estradiol®

1 1.0 1.0 1.0

2 0.43 (0.19-0.98) 0.44 (0.19-1.01) 0.44 (0.19-1.05)
3 0.19 (0.07-0.49) 0.20 (0.07-0.56) 0.21 (0.07-0.59)
4 0.05 (0.01-0.17) 0.05 (0.01-0.19) 0.05 (0.01-0.21)
P for trend % %%k *k k¥ %%k

*p<005 **p<00l ***p<0,001

1Unadjusted, except for matching factors (age and serum storage time).
2 For testosterone, ORs are adjusted for % SHBG-bound estradiol; for total estradiol and % SHBG-bound estradiol

ORs are adjusted for testosterone.

3 Adjusted for other hormonal variables in the table.

* The cut-points defining quartiles of testosterone were 0.73, 1.02 and 1.45 nmol/mL.

5The cut-points defining quartiles of total estradiol were 20, 30 and 45 pg/mL.

$The cut-points defining quartiles of percent SHBG-bound estradiol were 34.4, 43.6 and 51.3%.




Table 4. Odds ratios for the association between breast cancer risk and serum levels of DHEAS.

Quartiles of DHEAS'  OR? (95% CI) OR*(95% CI)
1 1.0 1.0

2 0.7 (0.3-1.5) 0.3 (0.1-0.9)
3 1.0 (0.5-2.1) 0.5 (0.2-1.3)
4 1.6 (0.7-3.5) 0.9 (0.4-2.3)
p for trend N.S. N.S

! The cutpoints defining quartiles of DHEAS were 1.33, 2.38 and 3.58 pmol/L.

?Unadjusted, except for matching factors (age and serum storage time).
* Adjusted for percent SHBG-bound estradiol and total estradiol.




Table 5. Spearman correlation coefficients for androgen and estrogen levels and Quetelet index.

Controls (n = 163)

Total % SHBG- % free Quetelet
estradiol bound estradiol index
estradiol
Testosterone 0.27%** -0.33%** (. 25%* 0.30%*x*
DHEAS 0.23** =0.27%** 0.25%* 0.05
Total estradiol -0.48%** (0 45%%* 0.43%%*
% SHBG-bound
estradiol <0.72%*%%  _(Q 52%**
% free estradiol 0.48%**
Cases (n = 85)
Total % SHBG- % free Quetelet
estradiol  bound estradiol ndex
estradiol
Testosterone 0.23* -0.27* 0.12 0.11
DHEAS 0.28* ~0.37%** 0.24* -0.06
Total estradiol -0.47***  0.19 0.38**:*
% SHBG-bound
estradiol <0.56%%*  _0.42%**
% free estradiol 0.29**

*p<0.05 **p<0.01

% b < 0.001




Chapter 111

Sample Size and Study Design Considerations

for Half-Life Studies




1 Introduction

The accumulation of PCBs (polychlorinated biphenyls) and DDE (1,1 dichloro—2,2—bis(p-
chlorophenyl) ethylene) residues, and other environmental contaminants in the body may
potentially have adverse health effects. Individuals who are able to cléar these toxic com-
pounds from the body at a faster rate, and thus have shorter half-lives,v may be at lower risk
of diseases associated with the toxins. Thus, in order to fully elucidate the role of enviroh-
mental contaminants in the development of disease, their rates of persistence in the body
must be accurately quantified. ‘

Previous studies estimating the half-life of PCBs have yielded inconsistent results, how-
ever. Reported estimates of half-life range from .5 months to 17 years for PCB mixtures.
(Yakushiji et al., 1984; Phillips et al., 1989; Elo et al 1985; Lawton et al.,‘ 1985). For specific
PCB components, half-lives have been estimated to be from less than 1 year to about 30
years (Yakushiji et al, 1984; Chen et al, 1982). Similarly, data on the half-life of DDE are
variable and limited. '

The lack of consistency among study estimates of half-life may be largely due to the small
sample sizes and limited number of repeated measurements per subject ‘utili‘zed in these
studies. For example, Chen et al (1982) examined the rates 6f elimination of PCBs from the
blood of PCB-poisoned sub jects in Taiwan using two to three serial blood samples from 17
individuals taken over a period of 6-14 months. Similarly, Steele et al (1986) calculated the
half-life of PCBs using two measurements of PCB concentrations made 7 years apart.

Phillips (1989) iﬁv&stigated how analytical (labora;tofy) error and the time interval be-
tween measurements affect the variability and possible bias in estimates of half-life calculated
from two measurements. Results indicate that half-life estimates based on only two mea-
surements become increasingly variable at shorter time intervals( between measurements and
at higher levels of analytical errof.

The precision of half-life estimates, however, is not only dependent on the magnitude of
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analytical error and the time interval between measurements, but also on the number of re-

peated measurements utilized in the estimation procedure. Given laboratory cost contraints,

“time constraints, and other limitations on the physical resources of a study on half-life, in-

vestigatdrs must decide where to allocate the resources in order to obtain the most precise

estimate of half-life.

Issues of sample size and study design for estimating subject-specific, as well as pop-
ulation half-lives of environmental contaminants have not been formally addressed in the
environmental and epidemiologic literature. The objectives of this paper are to proVide
useful guidelines for choosing the number of repeats and the optimal time interval between
repeats needed for estimating an individual’s half-life with a given level of precision, while
minimizing the cost of the study. In addition, sample size and power considerations for
studies comparing the population half-lives between two groups will be investigated. An

example is presented using data from a study on PCBs and breast cancer.

2 Methods

For most environmental toxins, the rate of elimination from the body may be described by

the following one—compartment exponential decay model:
C(t) = Coe™, Y

where C(t) is the concentration of the toxin at time ¢, Cy denotes the initial concentration, |

and ) is the rate constant. The half-life, ¢, /5, which is the time after which the level of toxin

~ is reduced to half its original value, is equal to In(2)/A.

If both sides of (1) are log-transformed, then we have the linear relationship:
In{C(t)} = In(Cop) — At. . (2)

Thus, given C(t) = {C(t1), ..., C(t)}, the set of serial measurements of the toxin obtained

on a subject at timés, {t1,...,tx}, the rate constant, A, may be estimated from the slope
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of the linear regression of 1n{C(t)} versus t. The least—'squares‘ estimate of A is ecjual to
A= E?;l{ln{C’ (t;)} = C}(t; — 1)/ Thoy (t; —1T)2, where & and T denote the average logarithm
of the level of toxin and average time of measurement, respectively. The corresponding
~ half-life for the subject may be estimated by &1/, = In(2)/A. |

| The sample size and study design issues associated with estimating the half-life will
depend on whether fhe focus is on obtaining a precise estimate of an individual’s half-life
or a population half-life. The former would be of interest, for example, in studies exploring
~ the relationship between an individual’s rate of elimination of the toxin with a particular
- genetic characteristic. .On the other hand, a precise estimate of a population half-life would
be pertinent when the investigator is interested in comparing the average half-lives between

two or more groups, such as diseased and non-diseased subjects.
Study Design for Estimatihg Individual Half-Lives

If the goal is to estimate individual half-lives with a certain level of precision, then clearly,
: the number of sub jeets to include in the study is not relevant. The frequency of measﬁrerheht
and duretion of follow-up are the primary factors which will determine the precision of the
.individuel’s half-life estimate. This can be shown as follows.

" The variance of J, the least-squares estimate of the rate parameter, is equal to 02/ Z?:i (t;—
1)?, where o2 is the variance of the deviation of the observed In{C(t)} from the value pre-
dicted by the regression line in (2). Then, using the Delta method (Cox and Hinkley, 1974),
the variance of f; /2 is equal to,

4 2 .
Viiv) =02 (5) s ©

Let t = {t1,t0,...,tx} denote k equally spaced points in time, where the time interval
between points is equal to I. Then the study duration, D, is equal to I (k = 1). Following

the arguments in Schlesselman (1973), we can express Z;?:l(tj —1)? as a function of D and '
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It follows that the variance of £; /2 can be expressed as:

k »  D¥(k+1)
Z(tj - Z) - {12(k — 1)}

=1

V(b)) = ln(2)2(§)49_3i12_(k_—_i)i _ (%)29_2%:1)1_)} o »

D% (k+1)

Thus, (4) describes how the precision of t /2 is a function of the study duration, D, the num-
ber of repeated measurements on a subject, k, oe, and A. For fixed values of the undérlying
rate parameter, A, and o,, the variance of & /2 18 directly pfoportional tow = @%2?%3%1;)12'
Schlesselman presented tables which show how the precision of a slope changes over different _
values of k and D. Table 1 describes analogous results for the precision of the half-life.
Speciﬁcally, we calculated w for various values of £ and D. One can easily see how w, and
thus, the variance of the half-life, decreases as the number of repeats and the duration of
study increases. The exception, however, is that for a fixed duration of study, obtaining 3
measurements doles not result in additional precision compared with 2 measurements. (This
is due to the algebraic result that the term (k —1)/k(k +1) in (4) is the same for k = 2 or
3.) Furthermore, for large k, the variance of £t /2 i8 proportional to 1/(D?k). Thus,; a unit
increase in the duration of the study will result in greater precision of the half-life estimate
than a unit increase in the number of repeated measurements. Finally, note that some com-
binations of & and D will yield the same level of precision. For example, 10 measurements
obtained over 7 months result bin the same precision as 7 measurements over 8 months, and
3 measurements over 10 months. ,

" The choice between different pairs of (k, D) for estimating the half-life will depend upon
the relative costs of each measurement and each time interval of follow-up (which may include

staff salaries and other administrative costs). If the two costs are equivalent, then results

- from Table 1 suggest that resources should be directed toward extending the duration of the

study, since this will result in larger gains in precision than will increasing the number of
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measurements. Wheh the costs of (k, D) differ, however, the allocation of resources which
will result in the most precise estimate of ¢;/; is less clear. '

For each sub ject, let C = crk + ¢ D equal the total cost of measuring the subject k times
over a duration of D years, where ¢; denotes the cost of an individual measurement, and c,
denotes the cost per year of follow-up. Assume that the goal is to estimate an individual’s
half-life with variance equal to V, while minimizing the total cost per study subject. If we

make the simplifying assumption that for large &,

1N 1202 /102 1202
~ 2 - e _1/_2 i -3
V~nQ) (A) D%k (AD) P (5)

then a Lagrange multiplier may be used to minimize C subject to the constraint in (5). After

some algebraic manipulations, we have the result
g [In@23ce ) 3_03(9')2 (t_l/z)z : (6)
‘ ch%)\‘1 ' ‘ 1% C1 A 7 ‘

o [m@Pe0\ _ (2402 () (b’ oo )
T Ve Xt LV \e/\ A ’

as the optimal values of k and D which will minimize the cost for a specified level of precision,

and

V. As expected, the optimal k and D depend on ¢y/ci, the ratio of the cost per month of
follow-up to the cost per measurement. As this ratio increases, the optimal design favors
increasing the number of repeated measurements and decreasing the duration of follow-up.
In order to calculate k and D from (6) and (7), respectively, values of A and o2 must be
assumed. Estimates may be obtained from the literature or preliminary studies.

The above result is valid only when k is large enough so that (k —1)/(k + 1) ~ 1. When
this assumption does not hold, closed form solutions are not a,véilable for calculating the
optimal & an‘d D, and iterative methods must be utilized. Investigators who are unfamiliar

with iterative numerical techniques may need to consult a statistician.

Study Design for Estimating and Comparing Population Half-Lives
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In the above discussion, it was assumed that the primary focus was on estimating the
subject-specific half-lives. Thus, the size of the study population was not relevant. waeVer,
when the goal is to estimate the average half-life in a particular population, or to compare
the half-lives in two different populations, then one needs to consider the number of subjects
to include in the study, in addition to the frequeﬁcy and duration of measurements. |

- Assume that the sample population is cdmprised of N subjects, and that each subject
has a “true” rate parameter, \;, which is distributed with mean Ap and variance, ol. Thus,
Ap can be interpreted as the underlying population rate parameter, and o2 is the variance
in )\; between individuals. Furthermore, assume that the frequency of measurementv, study
duration, and o, are the same for all subjects. |

Given the estimated subject-specific half-lives: {f},,,...,#1),}, the population half-life,
t,, may be estimated by: #f), = {]/, + ... +11),}/N. Using result (4) and the assumptions

above, it can be shown that the variance of £}, is equal to

ViEE = meP(o) o2+ 2GR U L ®)

Equation (8) can be used to determine the k, D, and N which will result in a certain level
of precision in the population half-life estimate. One can see from the form of the equation
that the precision of 552 improves as k, D, and N increase, and that increases in N will
diminish both the contributions of 02 and o2 to the variance. Note that the variance is no
longer directly proportional to a factor which is a function only of £, D and N. Thus, tables
similar to Table 1 cannot be generated unless values for o2 and o2 are assumed. The use of
(8) will be illustrated in the example. |

Désign issues er studies comparing the half-lives between two populations will now be
considered. Let t{ /2 and t2 /2 denote the half-lives in the two populations. The null hypothesis
is Hp : t] /2 = t2 /o We assume that the sample sizes in both groups are equal to N, that
all subjects have the same number of repeated measurements obtained at the same time

intervals, and that the between-subject variance of the true rate parameter is equal to o2 for
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both populations. It is shown in Appendix I that for fixed values of k and D, the required
number of subjects per group for attaining a (1 — 3) level of power to detect the alternative

hypothesis, Hy : t} , # t3/, at an o significance level is

2 .
" Zap2\ 2/ M + 20\ [35 + 51 [02 L o1k~ 1)

N =In(
(12 — 1/2) D2%k(k + 1)

9

where z,/, and zg denote the standard normal deviates corresponding to a/2 and @ signifi-
cance levels, respectlvely, and A = (A1 + A2)/2.

' Note that since the required sample size depends on A; and Az, the actual values of t] /2
and t2 /2 need to be specified, and not just the magnitude of their difference. Equation (9)
can also be easily re-expressed to determine the k or D to attain a speciﬁed level of :pOWer,
for fixed values of the other parameters | | |

The formula for determining the sample size was derived assuming that the duratlon
of the study and the number of repeats are fixed. However, the most common situation
when designing a study is that ¥ and D, in addition to N, need to be determined. Methods
similar to the above may be utilized to calculate the optimal values for the number of
subjects, number of repeats, and duration of study ‘which will minimize the overall study
cest, while attaining a specified level of power. The total cost of the study can be denoted
as C = co + (c1k + c2D + ¢3)2N, where ¢y denotes overhead and other fixed costs Which are
independent of k, D, and N; ¢; and ¢, are the costs associated with each measurement ‘a,vnd
each interval of follow-up, respectively; and c3 denotes the cost of enrolling each additional
subject. "

The optlmal parameter values for k, D, and N can be determined by mlnlmlzmg C,
subject to the constraint in (9). Unlike the previous problem, however, this has no closed
form solution and must be solved iteratively. A Newton-Raphson algorithm, written in SAS
PROC IML, was utilized to estimate the optimal parameters (Press et al., 1986). This

algorithm requires calculation of the first and second order derivatives, with respect to the
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parameters of interest, of the function which is to be minimized. In this case, the function
is O = ¢y + (c1k + c2D + ¢3)2N, with N substituted by the expression in (9). Expressions
for thé first and second—ofder derivatives of C' with respect to k and D, and details of the
algorithm are given in Appendix II. |
Specific values of z4, 25,02, 02, /25 and t2 J2: S well as the costs, ¢1, co, and c3, must be
assumed. Note that because the first and second-order derivatives of C with respéct td kand
D are independent of co, the overhead cost will not affect the outcome of the minirﬁizaﬁion
process, and hence, need not be specified. Given initial starting values for k and D, the
algorithm iteratively finds the values which minimize C. The optimal number of subjects,

N, is then calculated from (9). An example illustrating the methods is presented in the next

section. - ‘ (

3 Example

In this section, utilization of the methods to design a study to compare the differences in the

half-life of PCBs between subjects with and without breast cancer will be illustrated. First,

* values of the variance components, o2, the between-subject variance in the true rate param-

eter, and o2, the variance of the deviations of the observed measurerhents (log transformed)
from the values predicted from equation (2), must be assumed. Variance estimates Were
obtained using pilot data from the NYU Women'’s Health Study (NYUWHS), a prospeétive
cohort of 14,291 women who have been donating multiple blood samples over time (To-
niolo et al, 1991). A breast cancer case-control study nested in this cohort found elevafed,
but non—signiﬁéant, levels of PCBs measured at enrollment among cases relative to controls
(Wolff et al, 1993). No half-lives were measured at that time because only one biood do-
nation per subject was analyzed. Subsequently, pilot data became available on subjects in
the NYUWHS who had at least 3 blood donations. Concentrations of PCBs were measured

in serum specimens that have been collected and stored since enrollment; the assays were
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performed under the direction of Dr. Mary Wolff at Mt. Sinai Medical Center. Details of

the experimental protocol are prov1ded in Wolff et al (1991)

In calculating the half—hves for this cohort, the concentratlons of PCBs within subJects ‘

are assumed to be decreasing over time. In principle, however, the body burden of PCBs
may actually increase in individuals who are chronically exposed to low levels of the toxin
and whose initial concentrations were in the range of normal background levels, resulting in
negative half-life estimates. For our example, the analysis was restricted to include only the
15 subjects with at least 3 measurements of PCBs available who had a poéitive estimate of
. half-life. The mean half-life of PCBs among these subjects was estimated to be 10 years.

An estimate of o was obtained by fitting the following linear mixed ANOVA model:

Yi; = p+oi + Adtij + €35, (11)

where Y;; is defined as the logarithm.of the j** measuremert of PCB from subject ¢, p

~ denotes the overall mean, ¢; denotes a random subject effect, A; is the rate parameter for

subject i, t;; is the time since enrollment for subject i and donation j, and e;; is the residual

error, which is assumed to be distributed with mean 0, and common variance, o2. The mean -

sqilared error resulting from model (11) estimates o2. Fitting (11) to the NYUWHS data
yielded 62 = .046. |

Obtaining an estimate of the between-subject variance of the true rate parameters, 02 was
~ more problematic. If the measurements from all subjects were made at the same set _of time

points, t = {t1, ..., tx}, then one could estimate o? by first estimating ); for all subjects and

subtracting —T—L—- from the observed variance of J\;, since the unconditional variance of -

2= (=D
); is equal to GJ iI— m However, in the NYUWHS and in most other studies, sub Jects
have different numbers of repeated measurements obtained at varying tlme intervals. In this
case, a conservative estimate of o2 would be to use the observed variance of /\,. Although
this leads to an overestimate of the required sample size, the approximation improves as the

number of repeated measurements and the duration between measurements become large.
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The observed variance of the rate parameters of PCBs from our pilot data was estimated to
be .0028. '

Before determining the optimal design for comparing the half—livos between two popu-
lations, we illustrate how one can generate tables using (8) and the estimates of o? and
02 to evaluate the effect of increasing k,D and N on the precision of the estimate of a
single population half-life. .Suppose one assumes that the true underlying half-life of PCB
for the breast cancer cases is 11 years. This corresponds to a population rate parameter of
A, = In(2)/11 = .063. Using (8), we generated Table 2, which shows the variance of ff/2
for selected values of k, D and N. For example, with a sample size of 75 subjects measured
four times over a period of 8 years, the variance of the estimated half-life will be 1.66, cor-
responding to a 95% confidence interval width of: 2 x 1.96 X v/1.66 = 5.05 years for the
true population half-life. In this particular example, increasing the duration of study by a
given number of years, say z, results in greater gains in precision compared with increasing
by z the number of repeats or number of subjects. This result, however, Ihay not appiy for
different values of o2 and 2.

The optimal design for comparing the population half-lives of PCB between breast cancer
- cases and controls will now be determined. The following values for the costs of the study
were assumed: $200 for each PCB assay (cy), $25 for each year of follow-up (cz), and $75
to enroll each Subject (c3). Assuming that the half-life of PCB among control subjects is 8
years and that the study should have 80% power to detect an increase in the half-life to 11
years among breast cancer cases at an a = .05 significance level, we found, osing the iterative
algofithm described in Appendix II, that the optimal design is to enroll 100 subjects per
group, and to obtain 2 measurements per subject over 12 years. '

Even though this design is the one which will minimize the overall cost of the study, in
practice, it may not be feasible to conduct the study over a time period as long as 12 years.
Suppose that 5 years is the maximum feasible duration of study. Then, one can minimize

C with respect to k and N, while keeping D fixed at 5 years, to obtain the optimal design
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for a 5 year study. Iterative methods similar to the above were used to determine that the
optimal design for a 5 year study is to obtain 2 measurements per subject on 186 subjects
per group. Although this design will yield the same level of power over a shorter dﬁfation
as the first design, it will cost an additional $6275. | _ |

" Figure 1 shows how the optimal k,D and N change as a function of the cost of the
assay, assuming the values of the ofher parameters have not changed. For example, if the
cost of the PCB assay were only $2 rather than $200, then the optimal design is to obtain
26 measurements per subject over 5 years and enroll 103 subjects per group. The greatest
changes in the optimal values for k, D and N occur when cl ranges from $1-%9. For assay costs
greater than $9, the optimal value for k remains stable at 2 measurements. Corresponding
changes in the optimal D and N in this region of ¢l are minimal. Similar graphs can be
generated to evaluate the impact of varying the values of the other parameters on the optimal
values.

It is straightforward to show that specification of the level of power, type I error rate, and
population half-lives only influence the determination of the optimal N, énd not k and D
(see Appendix II). Thus, in order to evaluate how the optimal design changes as a function
of a, 1— B, t}, and 135, one need only to re-calculate N using (9), since the required k and
D will remain ﬁnchanged. For instance, continuing the initial example from above, in order
~ for the study to attain 70%, as opposed to 80% power, the required number of sub_jects is
reduced to 77 per group, while the optimal £ and D remain as above (k =2;D =12). The
values for k and D are affected only by the costs, ¢, ¢y and c3, and the values of _the variance

components, 02 and o2,

4 Conclusions

Understanding the pharmacokinetics, and in particular, the rate of excretion from the body

of environmental contaminants is crucial for ascertaining the etiologic role of these risk factors
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_in the development of disease. In this paper, methods for designing studies on estimating
and comparing the half-lives of environmental toxins have been described. The ability to
utilize these methods, however, may be limited by the avéilability of preliminary estimates for
the variance components. Although most studies on population half-lives provide estimétes
of the variance of the population rate parameters, which niay be used as an upper bound
estimate of 02, estimates of o2 are rarely published. The availability of pilot data b.ecomes
especially important in this case. Also, because iterative methods are required to determine
the optimal design for comparing two population half-lives, the techniques may not be eé,sily
implemented in practice for some investigators and a statisician may need to be consulted.
Finally, the techniques in this paper are based on the assumptions of a one-compartment

- exponential decay rhodel and a linear least-squares regression estimate of the rate parameter,
A. Thus, they cannot be applied to the multi-compartment case. Extension of this work to

accommodate the multi-compartment assumption will be the subject of future ‘resea.rch.

Most published reports on the half-lives of environmental contaminants have beeﬁ based
on small numbers of subjects and small numbers of repeated measurements. The large
variability in the published estimates of the half-lives of toxins such as PCB may reflect the
~ lack of precision that results from inadequate study designs. This paper demonstrates the
gains in precision and statistical power that may be achieved by increasing the sample size,
number of r_epéats, and time interval between repeats, and underscores the importance of

study design when planning studies on half-life.
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‘Table 1: Values of w (x10) as a function of the number of repeats, k, and the duration
of study, D. ' ' '

. D

1 2 3 4 5 6 - 7 8 9 10

9.609 2.402 1.068 0601 0384 0267 0.196 0.150 0.119 0.096
9.609 2.402 1.068 0.601 0.384 0.267 0.196 0.150 0.119 0.096
8.648 2.162 0.961 0.541 0.346 0.240 0.176 0.135 0.107 0.086
7.687 1.922 0.854 0480 0.307 0.214 0157 0.120 0.095 0.077
6.864 1.716 0.763 0.429 0.275 0.191 0.140 0.107 0.085 0.069
6.177 1.544 0.686 0.386 0.247 0.172 0.126 0.097 0.076 0.062
5.605 1.401 0.623 0350 0.224 0.156 0.114 0.088. 0.069 0.056
|5.125 1.281 0.569 0.320 0.205 0.142 0.105 0.080 0.063 0.051
10 [ 4.717 1.179 0.524 0295 0.189 0.131 0.096 0.074 0.058  0.047
15 3.363 0.841 0374 0210 0.135 0.093 0.069 0.053 0.042 0.034
20 | 2.608 0.652 0.290 0.163 0.104 0.072 0.053 0.041 0.032 0.026
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Table 2: Values of V(if),) for N = 25,50, 75,100; o? = .0028; o? = .046; \, = .063,
as a function of the number of repeats, k, and duration of study, D.

N=25
| D
2 4 6 8 10 15 20
31.48 10.43 6.53 5.17 4.54 3.91 3.70
28.67 9.73 6.22 499 443 3.86 3.67
2346 843 5.64 4.67 422 3.77 3.62
19.78 7.51 523 4.44 4.07 3.71 3.58
10 [ 17.19 6.86 4.95 4.28 3.97 3.66 3.55
151324 587 4.51 4.03 3.81 359 3.51
20]11.03 5.32 4.26 3.89 3.72 3.55 3.49

0 S | X

N =50

D
2 4 6 8 10 15 20
15.74 5.22 3.27 258 227 196 1.85
14.33 4.86 3.11 250 2.21 1.93 1.83
11.73 4.21 282 233 211 1.89 1.81
9.89 3.7 2.62 222 2.04 185 1.79
10 { 8.60 3.43 247 2.14 1.98 1.83 1.78
151662 294 225 201 190 1.80 1.76
20552 266 213 195 1.86 1.78 1.75

o O |

N=15

D
2 4 6 8 10 15 20
1049 348 2.18 1.2 1.51 130 1.23
9.56 3.24 207 1.66 1.48 129 1.22
782 2381 1.88 1.56 1.41 1.26 1.21
6.59 250 1.74 148 1.36 1.24 1.19
10 (573 229 1.65 143 132 122 1.8
15 {441 1.96 150 1.34 1.27 1.20 1.17
20368 177 142 130 1.24 1.18 L.16

00 D W N

N =100
- D
2 4 6 8 10 15 20
787 2.61 163 129 1.13 0.98 0.92
717 243 156 1.25 1.11 0.97 0.92
586 2.11 141 1.17 1.05 094 0.90
495 188 131 1.11 1.02 093 0.89
10 {430 1.71 1.24 1.07 0.99 092 0.89
151331 147 113 1.01 095 090 0.88
2012.76 133 1.07 097 0.93 0.89 0.87
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Appendix I: Determination of the Sample Size for Comparing Two Population

Half-lives

We assume that the sample sizes from the two populations are the same and are equal to V.
Let £}, and & 5 denote the observed half-lives in the two populations, and A and A denote
the estimates of the corresponding rate parameters. Then the test statistic for evaiuating
Hy : t1/, =13 is of the form:
f%/z - f%n

\/; [o2 + 2] 1n(2)2(2/34)
~ where Z is distributed as N(0,1), and X = (\; + X2)/2.

If the test statistic is to have power (1 — ) to detect the alternative hypothesis, H A

3

ti /2> t2 /o at a 1-sided o = .05, then we have the following expression:

fi2—£%2
21 > 20| Hat =18, G

\/ L [02 + 320 1n(2)2(2/ M)

Pr

where z, denotes the critical value corresponding to the o proportioh in the upper tail of
the standard normal distribution. | |

After some algebra, (1) can be re-expressed as:

t — 2= (t), —t1))
1 212(k—1) 1, 1
3 [o? + ikt m2)2 Gy + )

2

1-8 = Pr

o2 - 3y
o[ 02 + BB m(22(2/3) — (6~ 1)
. : o2 -
Jh 2+ B PGy + 5
Under the alternative hypothesis, the expression on the left-hand side of the inequality has
a N(0,1) distribution. Thus, |

[ 02+ B 22 (2/0) - (8~ )
V& [0+ SR m@2G + )

1 2

1-B=PriZ>
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Note that the definition of A requires knowledge of M1 and Ao, which are available only
after completion of the study. However, for large n, ) may be well approximated by A=
(A1 + A2)/2. After substituting A for X above, setting the expression on the right-hand side
equal to —zg and solving for N, we have -

o O o TR o+ 00 @
(ti/z - t%/2) ° Dzk(k + 1) ‘

This sample size was derived under the assumption of a one-sided alternative hypothesis.

- When Hy is two-sided, the required sample size is obtained by simply substituting 2, /2 for

Za ‘in (2).
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Appendix II: Details of the Newton-Raphson Algorithm

The overall cost of the study is equal to :

C = ¢+ (c1k+ 2D +¢c3)2N
2

In@? |2 2/A 4 20 FFF |, ot -]
(82— ) *DR(k+1)]

= ¢o+ (cik + caD + ¢3)2

(2)

with N substituted by the expression in (10). The optimal k¥ and D which will minimizeyC'

are the values which will solve the following first derivative equations:

- aC o  €10212 2 30212 c0212] [1+2k— k2] _ .
'a_k’A{cl"s+ D? [(k+1)2]+[ Dt T D || Twrnr |7

2(f —
9C _ A{cws2 _ Lo (k- 1) <2c1k 22 2—C§>} =0,

aD k(k+1) \ D3 ' D? ' D3

_ In(2)2 [za V/2/ R4 4254/1/ X4 +1/X 2
where A = 2 T
1/27 “1/2

the constant can be omitted without affecting the final solution.

. Note that since A is not a function of k and D,

The Newton-Raphson method for solving the above equations requirés calculation of the

~ corresponding second-order derivatives:

8C 1202 [ —4g (c3 + c3D)2(k® — 3k? — 3k — 1)
o " D2 (R 1) CEDE

o’C 24(k>— 1)o? (3cik L 3cs
oD? —  (k+ 1)k

pr T3t D
82C | 4o 142 —k? (25 5
RaD ~ L2 [(k+1)2D3+ CETE ('JFQD ) ‘
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Given the preliminary values, (ko, Do), the algorithm calculates updated values for k and
D according to:

-1

k k 82c o2¢C ac
_| M | _ | o akéD ok
82C_d%C ac

D Do dDdk 8D?2 8D

The algorithm repeatedly updates (k, D) and calculates the above until convergence is

obtained.




Chapter IV

The Analysis of Correlated Panel Data Usmg

" a Continuous Tlme Markov Model




1 Introduction

Mahy biological processes may be described in terms of a finite number of states which
individuals proceed through over time. For example, Klein et al (1984) and Kay (1986)
have modeled the phases of cancer as a three stage disease process.

In most longitudinal studies which follow the passage of individuals through various
biological states, 'the‘availablé data consist of the series of states each subject was
observed to be in at various points in time. Because monitoring is not continuous,
informaﬁon about the process is usually unavailable betweén follow-up times, and the
exact times of transition from one state to another are not known. This type of data,
in which the observations consist of the states occupied by the individﬁals undef study
at a sequence of discrete time points, is often referred to as “panel” data. Methc')ds'for
analyzing panel data using time-homogeneous Markov models have been explored by
Klein et al. (1984), Kalbfleisch and Lawless (1985), and Gentleman et al (1994).

Existing methods for the analysis of panel data have been applicable to the case |
where a single biological process is of interest. However, many clinical studies monitor
two or more processes over time on each individual, where the processes observed within
a subject may be correlated. For example, in certain longitudinal studies involving
HIV-infected subjects, several immuhologic Variablés, such as CD4, CD8 and serum
im'munoglobulins' are each measﬁred periodically on all subjects. Also, in most clinical
trials, several possibly correlated clinical variables are repeatedly assessed during the
follow-up period of each patient. »

In the clinical trial which motivated the methodology proposed in this paper, pa-
tients with the Acquired Immune Deficiency Syndrome (AIDS) were randomized to
receive one of two drugs: ganciclovir or foscarnet, for the treatment of cytomegalovirus
(CMV) retinitis, and were periodically monitored for the development of toxicities in
several hematologic, enzymatic, and chemical variables. For each variable, five states
of toxicity were defined: none, mild, moderaﬁe, severe and life-threatening, according

to the AIDS Clinical Trials Group (ACTG) toxicity grading system. The data for a
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particular patient consisted of repeated assessments over time of the toxicity states of
each of several possibly correlated clinical variables, yielding what we refer to as “cor-
related panel” data. To our knowledge, statistical methods for analyzing correlated
panel data have not beén previously developed.

Wei, Lin and Weissfeld (1989) described a method for analyZing multivariate sur-
vivﬁl data which models each survival distribution marginally using a Cox proportional
hazards model, and makes no specific assumptions regarding the structure of depen-
dence between distinct failure times on each subject. This approach has also been
utilized by Stram, Wei and Ware (1988). In this papér, we apply the marginal ap-
proach to the analysis of correlated panel data. We model each process based on a
time-homogeneous Markov model allowing for covariates and impose no specific de-
pendence structure among the related processes. The resulting estimators are shown
to be asymptotically jointly normal with a covariance matrix that accounts for the
dependence among related processes and can be consistently estimatéd. Simulté,neous
inference procedures are also proposed. In Seétion 2, the method for a‘,nalyzingv corre-
lated panel is described, and in Section 3 an example is presented using data from the

CMYV clinical trial.

2 Methods

\l

2.1 Markov Modeling and Estimation

Assume that K processes are periodically observed on each subject, and that each
process has @ ordered states. We model the k** process, (k = L..,K), as a time-
homogeneous Markov process, where the first Q) — 1 are transient states, and the Qth is
a sing]ev absorbing state. Transitions are assumed to occur irreversibly from one state to
the next. The time-homogeneous Markov assumption implies that times to tra_hsition
between states are exponentially distributed with a hazard, or transition intensify, that

may be modeled as a function of covariates.
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For notational convenience, we assume a single covariate, z, is of interest. Then,
_following the proportional hazards model of Cox (1972), the transition intensities for

each process can be modeled as,
k(N _ K k _ _
A (2) = Ajexp(B,2), g=1,..,.Q-1L,k=1,.,K

where M is the baseline transition intensity between states g aﬁd g + 1 for the kth
process, and ﬁg is the regression parametér denoting the effect of z on )\’;. ‘
For the ith subject (i = 1, ..., n) with covariate z;, the probability that the kP process
will be in state s at time ¢, -+, given that the process was in state r at time ¢y, is denoted
as pF_(t, z;). Then, under the assumptions that \5(z;) # Af(zi), 1#5,51=1,.,Q-1,
standard fnethods may Be utilized to show that this transition probability is equal to
s S e—)\;?(z,-)t

ot 2) = COTN )2l | i DRy — T

where r = 1,...,Q — 1;s > r, and s < @ (Chiang, 1980). The transition probabilities

1)

from a transient state r to the absorbing state @ are equal to

Q-1 ,
pI:Q(t?zi) =1- Z pf_](t’ z’i)7 r= ]-, Q - 1,
j=r
and pQQ(t th) =1.
Now, let 3’“ denote the state of the kth process for the ith subject at the jth

observation (j = 1,,.,m;), at time tk.. measured in days since date of initial observation.
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Then the observed history of the kt* process for the i*" subject may be denoted as

k__ [k 4k E oy
A' - ( zl’tzl? ] zml’tzm,)

(2

Following the Markov property and conditional probability arguments, the probability

of observing A¥, conditional on z;, can be expressed as,

Pr(AF|z;) = Pr(k™ process in state sf; at time tk,...,state s&, at time tk |zz)

m;—1

= H ps”,sz J+1 (t 6,Jj+1 tf;, )

Jj=
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where the form of p¥ tk.  —tk z) may be derived from (1). Then the marginal
Sij ,J+1 ) .

»8i,5+1 (

likelihood function for the k™ process over all n subjects is

L) = T1Pr4ilz)
—1

el
= H H pSij,Si,j+1 (ti,j+1 —tij’zi) )
i=1 | j=1 :

where 6, = (\¥, .. AE_;BF,...85_,). The corresponding log-likelihood is equal to
n |mi—1 .
LO)=Y [ > log{pk, 5iss, (thiss — 5 zi)}} : P)
| i=1 | =1

Substituting. (1) in (2), the maximum likelihood estimator, dx, of Oy, for each process
may be obtained by solving dL(6x)/00, = 0, for k = 1,...,K. Tt follows that under
the usual regularity conditions, y/n(f — ) for each process is asymptotically normal

with mean 0 and covariance matrix I;*(6x), where I;(6)) is defined as

o= [ AL [ 08V

“The estimates of 8, from different processes may be correlated. To take into aCcount

the correlations among 0’s, consider the Taylor series expansion

V(B — 6x) ~ Ik_l(i%)%,

where : . )
1 1 & 3£,(9k) 1 & ' :
— U, = — =5 &, _ 4
Jn " \/ﬁ; 004, \/'ﬁ,-;gk “
and _ o -
Z,(0x) = “n 00
b 61
By the above development, /n : — : can be written as the sum of
ix O

- independent vectors with mean 0, and thus, under the usual regularity conditions,

80




follow a multivariate normal distribution with mean 0 and covariance matrix X, which

may be partitioned as

Yiu X v E1K
Yoo Yoo -+ Yog

| Tik Yok -+ DKK |
where T = I71(0:), and X is the covariance matrix between vnl; = 6)) and
V(6 — 0;). From (4), the covariance matrix of (Ux/v/n, Uj/+/n) can be estimated
consistently by | |
| —Zﬁzk i | - (5)
where &, is equal to 8£ (6r) / 00, evaluated at O, and L; +(0x) is the contribution to the

log-likelihood made by the ¢ sub ject. The term E,J is defined similarly. Since Ik 1(9k)
and I Y,) = (iyr, fzkfzk) are equ1valent in probability, it follows that one can

0) (X 6dh ) 100

2.2 Hypothesis Testing

estimate X by

for j#kand j,k=1,.., K.

The multivariate normal distribution of (él, ...,éK) provides a basis for making" si-
multaneous inferences about the 0xs. In particular, suppose that we are interested
in evaluating the effect of z on the transition intensities for the K processes. Let
n = {n, o Mxx@-1} = Bty Bo-1,1, s Pik, .oy Bg—1,k) denote the parameters of
“interest, and let ® denote the estimate of the covariance matrix of 7, which can be

obtained from 3. Then asymptotically the following holds
W = 7'®7% ~ Xxx -1 | (6)
The above W statistic can then be used to simultaneously test the null hypotheses H:

m=0,forl=1,..,K x (Q —1). If the null hypotheses are rejected, the next step is

to decide which of the 7; are non-zero.
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Let {71, 72, -, Tk x(@-1)} denote the standardized estimator of {1, M2y s MK x(Q@—1) }»
where 7, = 7 /¢3}/ 2 and ¢y is the (I,1)" element of 3. Under the null hypotheses
Hy, {f,..,kx(@-1)} is approximately normal with mean 0 and covariance matrix
® = {y}, where <Z>pq = Gpa/ (Popbaq)/?, and @y, is the (p, g)th element in &. A
conventional multiple testing procedure rejects H;,l = 1,...,K x @ — 1, if |m| > ¢

where ¢ is the smallest number such that
Pr(ii| < 1 =1,.., K X QH, ., Hrxg1) S 1 -0

and a is a prespecified level of signifcance. However, the sequential multiple test
procedures studied by Marcus, Peritz and Gabriel (1976), Holm (1979) and Wei and
Stram (1988) will yield more powerful tests than the above conventional milltiple testing
procedures.

Following Wei and Stram (1988), let 7j; be the Ith largest absolute value of the
iy’s, and let ®* be the corresponding variance-covariance matrix that is obtained by
rearranging the rows and columns of ®. Also, let H, 7 : nf = 0 be the ordered hypotheses
from the H’s according to the order of 7, ..., fifcxg-1- Furthermore, let (Z1, ..., Zgx0-1)
denote a multivariate normal vector with mean zero and covariance matrix d*. Starting
‘with the hypothesis H, we reject Hl*,l =1,.,KxQ-1,if P(minlstKxQ_i Zj <
—|7f]) < a/2, where « is a prespecified two-sided level of signiﬁcanée, provided that
H;, ..., Hf | have been tested and rejected. It can be shown that the asymptotic type I
error probability of this procedure is « for any combination of true Hjs. An illustration

of the sequential multiple testing procedure is provided in the example.

3 Example

The methods developed in the previous sectidn were applied to data derived from
the CMV retinitis clinical trial. This trial, conducted by the Studies of Ocular Com-
plications of AIDS Research Group, was designed to compare ganciclovir (Cytovene,

Syntex Laboratories) and foscarnet (Foscavir, Astra Pharmaceutical Products) in the
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treatment of CMV retinitis in AIDS patients (SOCA, 1992).

Two hundred and thirty-four patients were randomly assigned to treatment: 127
to ganciclovir and 107 to foscarnet. One of the objectives of this trial was to compare
the toxicity profiles of the two drugs. We focus particularly on the toxic effects of
the treatments on the two hematologic variables: hemoglobin and absolute neutrophil
count, which could be correlated within individuals.‘ Five stages of toxicity were defined
for each outcome based on the following ACTG toxicity criteria. For HGB, the stages
were defined as, none: > 11.0g/dl, mild: 9.5 — 10.9¢g/dl, moderate: 8.0 — 9.4g/dl,
severe: 6.5 —7.9g/dl and life-threatening:< 6.5g/dl. The corresponding toxicity:grades
for ANC were, none: > 1500/, mild: 1000-1499/ul, moderate: 750-999/ ul, severe:
500—749/ pl, and life-threatening: < 500/pl. It should be emphasized that even though
the quantltatlve levels of each variable were known, the grade of toxicity rather than
the actual level was more clinically relevant. In addition, because very few subjects
were observed to progress to the life—threatening stage of both HGB and ANC toxicity,
this state was combined with the severe toxicity state to yield four possible states for
each process. The goals of the analysis were to estimate and compé,re the effects of
foscarnet and ganciclovir on the transition intensities between the states of ‘poxicity of
HGB and ANC, and to estimate the average waiting time in each state. |

The methods in the previous section were based on the assumption that transitions
between states occur irreversibly. Levels of HGB and ANC may not decrease mono-
tonically over time, but could increase from one visit to the next. When this occurred
in our data set, the process was simply held in the state defined by the previous ob-
serﬂfation until it was observed to decline again, thus allowing us to model thé states
as irreversible. The frequencies of occurrences in which the processes were observed
to increase rather than decrease from one visit to the next were relatively low and
were similar in the two groups (ANC: 20% vs. 18% for foscarnet and ganciclovir, re-
spectively; HGB: 21% vs. 18% for foscarnet and ganciclovir, respectively), so that the
assumption of the progréssive model would not likely bias the estimates of treatment

effects.
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The covariate denoting treatment group for the i subject is defined as z; = 0
for Foscarnet, ad z; = 1 for Ganciclovir. The parameter vector for HGB is de-
noted as 1 = (AL, A}, AL, B, 8L, B1), and the corresponding vector for ANC is 6, =
(A2,73, \2, 32, B3, B2), where (3 is the coefficient corresponding to the effect of treat-
ment on the transition intensity between states ¢ and ¢ + 1 for proceés k.

~Tables 1 and 2 show the estimates of the transition intensities and the B8 coefficients
for the two processes. The mean waiting time for the k™t state was estimated by
1 /(Ae?). The mean waiting times in each state of ANC for ganciclovir are less than
half the mean waiting times for foscarnet, indicating the toxic effects on ANC are
‘more severe with ganciclovir. On the other hand, for HGB, foscarhet appears to be
associated with a higher probability of transition from mild to moderate, and moderate
to severe toxicity. '
~ Figures 1 and 2 show the estimated cumulati\}e distribution functions of time to
severe toxicity of HGB and ANC, respectively, for each treatment. The difference be-
tween treatments in the probability of reaching severe toxicity is much greater fof ANC
than HGB. The Kaplan-Meier estimates of the distribution functions are also shown for
comparison. Our model appears to underestimate the probabilities of progressing to
severe toxicity relative to the Kaplan-Meier estimates. The lack-of-fit of the model was
also apparent in results (not shown) of the goodness-of-fit test proposed by Gentleman
(1994) that was performed. The inadequacy of the assumed model could indicate that
the estimateé of the regression coefficients and corresponding covariance matrix inay
not be valid; however, for illustrative purposes we proceed to preéent the results of the

sequential multiple testing procedure.
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The covariance matrix for (3, B3, 8L, 32, 32, 32) was estimated to be

0.0560 00020 0.0023 0.0006 0.0116 —0.0000 \
0.0689 —0.0006 0.0087  0.0072 —0.0004
0.1072 0.0088 —0.0023  0.0082

0.0861 0.0024 —0.0014 |

0.0692  0.0082

0.0968

To jointly test Hf : F = 0,1 = 1,2,3;k = 1,2, we calculated the test statistic, W,
from (4), which approximately follows a x? distribution with 6 degrees of freedom. The
observed W was 42.96 which is significant at less than i% level.

In order to evaluate which of the coefficients were non-zero, we employed the mul-
tiple testing procedure described in the previous sectioh. The standardized parameter
estimates (31, B}, B3, B2, B3, B3) were 3.477, 3.910, 2.629, -1.721, -1.039, and 0.426 re-
spectively; Since —|BY] < —|BY| < —|BY| < —182| < —|B3| < —|B3], we tested the null
hypotheses in thé order: Hi, H}, H}, H? H2, HZ. Using the integration algorithm for

multivariate normal probabilities in Schervish(1984, 1985), we have

P(min{Z1, Za, Z3, Za, Zs, Zs} < —3.910) =~ 0.0002

P(min{Zs, Zs, Z4, Zs, %6} < —3.477) ~ 0.0012
P(min{Zs, Zs, Zs, %6} < —2.629) ~0.0279

P(min{Zs, Zs, Zs} < —1.721) ~ 0.1230.

Assuming a two-sided a = 0.05, these results suggest that ganciclovir has a greatef
toxic effect on ANC than foscarnet, across all states of toxicity. However, the evidence
is insufficient to conclude that the toxicity profiles for HGB are different for the two

treatments. -
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4 Conclusions

Although the proposed methods were applied to data from a clinical trial of two treat-
" ments for CMV retinitis, they are also applicable to longitudinal studies of othor dis-
eases, such as breast cancer, in which several clinical variables are bperiodicallby moni-
tored over time on each subject.

A key assumption of the methods is that transition rates between states do not
change over time. This time-homogeneous Markov assuniption is (juite restrictive,
V however, and may in part explain the é,pparent lack of fit of the model. An alternative
approach is to assume that the intensities are piecewise constant over distinct time
intervals (Gentleman et al., 1994) . Kalbfleisch and Lawless (1985) also suggested fitting
a parametric time-dependent model.

}In addition, we have assumed a progressive Markov model, in which transitions
between states can only occur in one direction. The proposed methodology can in
principle be extended to the situation where arbitrary transitions are allowed, by mod-
elling each process marginally using the methods in Kalbfleisch and Lawless (1985)
and deriving the joint covariance matrix estimate of all model parameters empirically.
However, because a larger number of parameters are required to specify the reversible
model compared with the progressive model, estimation of the parameters may be more

difficult.
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Table-1.

Estimated parameters and mean waiting times in each state of toxicity
for Absolute neutrophil count

Mean waiting time ~ Mean waiting time

Stage (A£S.D.,p£S.D.) for Fos.(days) for Gov.(days)
1 (.0070+.0013, .8231+.237) (143 £ 27) (63 + 8)
2 (.00594.0014, 1.03+.263) (169 + 40) (61 £ 8)
3 (.0065+.0020, .861+.327) (154 + 47) ‘ (65 + 8)

s
Table-2. Estimated parameters and mean waiting times in each state of toxicity
for Hemoglobin count
: Mean waiting time = Mean waiting time

Stage (A£S.D.,p+S.D.) for Fos.(days) for Gov.(days).
1 (.01394.0027, -.505+.293) (72 £ 14) (119 + 26)
2 (.0098:£.0018, -.273+.263) (102 + 19) (135 + 25)
3 (.0062+.0013, 0.133+.311) (161 + 34) (142 + 32)
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Chapter V

o The Application of Equivalence Tests in Val-
idation Studies of Dietary Assessment Meth-

- ods




1 Introduction

The role of diet in the development of diseases such as cancer and heart disease is the focus of
numerous épidemiologic studies. The ability of these studies to evaluate the true relatioﬁship
| between diet and disease depends on having valid information on an individual’s habitual
dietary intake. Obtaining accurate data on dietary intake can be challengihg, however, and
efforts continue to be directed toward developing and improving instruments which are not
only informative, but also cost-effective and easy to administer. )
The main approach for evaluating a new method for assessing dietary intake is to perform
a validation study. Given that a subject’s “true” dietary intake can never be known, a
validation study involves comparing the new technique with an established sﬁperior méthod.
For example, food frequency qﬁestionnaires, which havé the advantage of being inexpensifle
and easy to administer, are often validated against the more accurate but also more costly
and time-consuming dietary record (Pietinen et al., 1988, Rimm et al, 1992). If the observed
degree of agreement between the two methods is “sufficient”, then ihvestigators conciude
that the new instrument is suitable for use in epidemiologic studies of nutrition and disease.
The most appropriate statistical technique for assessing agreement between two dietary
methods has been debated extensively in the literature. Many inVestigators utilize the cor-
relation coefficient to measure agreement, whereas others have advocated comparing the
means. In addition, the relevance of hypothesis tests in validation studikes‘ has been ques-
tioned, and @ priori criteria for judging validity are either inappropriate or absent. For
example, when means are compared, the typical conclusion is that the two methods are
comparable if the null hypothesis of vno difference is not rejecteda— n improper statistical
procedure. When correlations coefficients are calculated, rejection of the null hypbthesis'
that p = 0 is irrelevant, and there is no statistically-based inferential criterion to determine
when the correlation is high enough to be acceptable as a demohstration of validity. Hence,

conclusions from validity studies have been either fuzzy or inappropriate.
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In this paper, we present a conceptual approach for drawing inferences regarding :the
validity of a dietary assessment method based on equivalenée testing. This approach was
originally developed for the anélysis of therapeutié equivalence trials (Bla;ckvvelder,: 1982).
The objective of a therapeutic equivalence trial is to show that a new treatniént is as effective
as a standard, in contrast to the goal of most conventional clinical trials which is to prove
superiority of the experimental treatment. The demonstration of therapeutic equivalence
between treatments is of interest when the new regimen offers advantages. such as reduced
toxicity, invasiveness, and cost. The goal of most validation studies of dietary instruments
can be viewed analogously: to prove that a technique that is simpler, easier to administer,
and more cost effective is as informative as an established method of assessing dietary intake.

Because of the parallels between the objectives of the two type of studies, sta_tisﬁcal
methods for proving the equivalence between two therapeutic regimens are also applicable
to proving the validity of a new dietary aéséssment method. In the following sections, we de-
scribe examples where conventional hypothesis tests have been misused in validation Studies, '
and then present an alternative approach based on an equivalence testing framework. ‘In this
- approach, one must define in advance the degree of agreement which constitﬁtes adequate
validity. Appropriately specified hypothesis tests or confidence intervals are then used to
infer whether this magnitude of agreement has been demonstrated. Implications for deter-

mining the sample size of a validation study based on the proposed method are also discussed.

Use of Conventionél Hypothesis Tests in Validation Studies |

~ The most common approach for evaluating the degree of agreement between two Edietary
methods is to calculate the correlation coefficient, which quantifies the degree of lineér asso-
ciation between measurements obtained by the two methods. Although this Statistic': cannot
detect the presence of a systematic bias, the correlation does provide a measure of how sim-
‘ilarly the two methods position their measurements relative to their corresponding means

(Kelsey, Thompson, and Evans, 1986).
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Many investigators only report estimates of the correlations and do not perform statistical
tests because quantifying the degree of measurement error is viewed as the main objective
in a validation study rather than hypothesis testing (Willett et al, 1987; Rimm et al, 1992).
Others have reported p-values for the null hypothesis, H, : p = 0, and p-values which are
less than 0.05 have been interpreted as indicating appreciable agreement‘between dietary
methods (refs). As Garrow (1995) and Margetts and Thompson (1995) have pointed out,
however, statistical significance does not necessarily imply the existence of a correlation
of sufficient magnitude; only that the correlation is not likely to be 0. For exami)le, an
observed correlation as low as 0.1 would be statistically significant (p=0.046) if based on a
validation sample size of 400 subjects. Therefore, tests of the conventional hypothesis of a
null correlation are not very meaningful in validation studies. |

The use of the correlation coefficient as a measure of agreement has been criticivzed‘ be-
cause of the lack of generalizability of this parameter to other study populatibns with different
magnitudes of nutritional variability and the inability of the correlation to capture a sys-
tematic bias. An alternative method for assessing the agreement bétween two methods is to

compare the means. Statistical tests have also been misused with this approach, however.

 For example, Chu et al (1984) compared the mean dietary intakes from two methods and

if they “did not differ significantly (p > 0.05) ... then the two methods agreed absolutely”.
This is not a valid approach for evaluating agreement because the p-value depends on the
sample size and the lack of statistical significance could be due to an insufficient nuﬁlbér of
subjects rather than true equivalence in the two methods. »

Lee et al (1983) proposed the use of regression coefficients for aﬁalyzing data from val-
idation studies and claim fhat two methods are in complete agreement only if théy show
a linear regressibn cdefﬁcient that is not statistically different from 1.0. But similar to the
previous example, one could erroneously conclude agreement between the“methods simply
by having a small validation study which has inadequate power to detect a non-unity slope

(Wahrendorf, 1985).
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It is clear that conventional tests of significance are not appropriate for assessing valid-
ity, since rejecting the hypothesis of a zero correlation does not necessarily imply sufficient
agreement, nor does failing to detect a difference in means or a non-unity slope. On the other
hand, reporting only the estimated level of agreement is not 'satisfactory either, since any
evaluation of agreément should factor in not only the magnitude of the estimate, but aﬂso the
associated degree of imprecision. Statistical methods developed by Dunnett and Gent(1977)

and Blackwelder(1982) for evaluating the equivalence of two treatments in a clinical trial

~ are an alternative approach for evaluating agreement between two dietary instruments in a

validation study.

2 Methods

Equivalence Testing Framework
In conventional hypothesis testing involving two groups, the goal is to demonstrate that

a difference between the groups exists. Thus, the null hypothesis is specified in terms of

" equivalence and the alternative is set up in the direction of a difference, e.g., Ho : p1 = p2

and Hy : p1 # s, where py and py denote the means in two groups. In contrast, when
one is trying to demonstrate equivalence between groups, this formulation of the null and

alternative hypotheses no lohger applies since the p-value for the above will be “a measure

- of the evidence against the null hypothesis not for it, and insufficient evidence to reject the

null hypothesis does not imply sufficient evidence to accept it.” (Blackwelder,1982).

To overcome this difficulty, the strategy in equivalence studies is to reverse the traditional
roles of the null and alternative hypotheses so that the null hypothésis now specifies non-
equivalence between the two groups, whereas the alternative is in the direction of equivalence.
To see how this principle can be extended to a validation study, suppose the objective of the

study is to show that the means of two dietary methods are equivalent or nearly equivalent.
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One first specifies §, the maximum allowable difference between the methods that would still
make them “equivalent” for practical purposes. Then, one formulates fhe ﬁull hypothesis S0
: thaf the absolute difference in means is greater than or equal to 4, i.e., Hy : |pg — po| 2 0
and the alternative so that H : —0 < pg — pa < 0. Rejecting Hj then allows one to cenclude
that the magnitude of the difference in means is within a tolerable range, and therefore that
the methods can be considered interchangeable. _ .

Because measurements obtained from the experimental and established methods in val-
idation studies are paired, H} can be evaluated by performing a paired t-test of a non-null

difference using the following statistic:

|d| —
Sd/\/_

where d denotes the mean difference between the methods, s; denotes the standard dev1at10n

t=

of the difference, and n is the sample size. The two-sided p-value is equal to 2 X Pr(T > [t]),
where T follows a t distribution with (n — 1) degrees of freedom. '

As an illustration, Willett et al (1987) validated a seml—quantltatlve food frequency ques-
tionnaire against a 1 year dietary record using a group of 27 subJects. No hypothe31s testing
- was performed and only means, standard deviations, and correlations were reported for Varij
" ous nutrients. For vitamin C, the population mean based on the dietary record was estimated
to be 125 mg/day with a standard deviation of 87 mg/day, whereas the food frequency ques—'
tionnaire yielded a mean of 146 mg/day with standard deviation of 88 mg/day. Since the

standard deviation of the difference was not reported in the paper, we approximated it by

the following formula: \/ s? + s2 — 2ps; 55, and used the available estimates of the individual
standard deviations and correlation given in the paper. The correlation was reported to
be 0.38, yielding an estimate of the standard deviation of the difference of 97 mg/day. We
performed a test of the the conventional null hypothesis of no difference in means, and the
two-sided p-value is 0.27. Based on the non-significance of this result, an investigator may

erroneously infer that the two instruments are equivalent in measuring vitamin C.
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Now suppose that a maximum difference of 30 mg/day in vitamin C between the two
methods is considered tolerable, which corresponds to half »of the recommended daily al-
lowance(RDA) of this nutrient. Then the two-sided p-value corresponding to the null hy-
pothesis: H§ :‘ |p1 — pa| = 30 versus the alternative: H . 30 < p — po < 30 is equal
to 0.64. This result indicates t’hat under the assumed criterion for equivalence in \}itamin
C, the evidence is inadequate to conclude that the magrﬁtude of the difference between the
two methods is sufficiently small to be acceptable,. On the other hand, if a less stringent
criterion for equivalence were used, such as § = 60 mg/day, then the corresponding p-value
for the null hypothesis, Hg : | - p12] > 60 is equal to 0.047. The null hypothesis for this
definition of § would be rejected, and one would conclude that the t\&o dietary instruments
were equivalent for nleasuring vitamin C.

The principles of equivalence testing can also be extended to the case where a correlation
~ is used to measure the strength of agreement in a validation study. In the previous example, a
smaller difference in means corresponded to increased validity. In eontraSt, a higher degree of
correlation implies greater agreement, so ¢ here should be deflned as the minimum acceptable
level of correlation. One possible value for J is 0.4, since “levels of validity lower than this
will rather seriously attenuate associa.tions‘” (Willett, 1990). However, higher values should
be used if one wants to be more conservative. » |

Since two methods would be judged to be non-equivalent if p < § and equivalent for
practical purposes if p > 4, the null and alternative hypotheses‘ should be specified as,
H : p < 6 and Hj : p > 0, respectively. Note that the direction of this null hypothesis
based on a correlation is opposite the one based on the absolute difference in means. Again,
this is because the null hypothesis in an equivalence study should always be specified in the
direction of non-equivalence. | '

Using Fisher’s arctanh transformation, the hypothesis of a non-null correlation may be
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tested using the following statistic which follows a standard normal distribution:

z=[0(r) = CO/(N - 3),

where C(z) = 0.5log,(1£2), and r denotes the observed correlation. Because Hj is one-sided

for a correlation, the corresponding p-value is equal to 1 — ®(2), where ®() denotes the

~ cumulative standard normal distribution. Rejecting H allows one to conclude that there is

an acceptable magnitude of agreement between the two methods.

To illustrate this approach, suppose a validation study based on 25 subjects was per—
formed and the observed correlation coefficient was 0.6. Given the magnitude of this point
estimate, and that the two-sided p-valu'e for the classical null hypothesis of no correlation,
Hy : p = 0 is highly statistically significant (p=0.0012), an investigator may conclude that
the experimental instrument is valid. However, the p-value associated with the hypbthesis,
H} : p < 04 is 0.10. According to this result, one cannot claim that validity has been

demonstrated because the hypothesis that the correlation is below the minimum acceptable

~ level cannot be rejected.

Defining & will be the most difficult and subjective aspect of the equivalence testing ap-

* proach for assessing validity. This is especially so when the comparison of means is used to

evaluate agreement since a different & needs to be specified for each nutrient and relevant
information on which to base the definitions may be lacking. Another potential difficulty

is that standard statistical software packages do not generally provide p-values for tests of

" non-null differences in means and non-null correlations. Thus, the investigator may have to

compute the relevant test statistic by hand or with the aid of a calculator. When a large
number of equivalence tests need to be performed for various nutrients, it may be more

efficient to create a simple computer program to perform the calculations.

Confidence Interval Approach to Assessing Validity

Confidence intervals convey all the information of a hypothesis test, but are additionally
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useful because they provide a range of values of the true level of agreement that are con-
sistent with the observed data. Durrlemen and Simon (1990) state that “such approach is
appealing because it emphasizes the magnitude of the difference...rather than its Statistica_l
significance, which is‘ often misunderstood or misused as a binary decision rule”. For this
reason, many investigators favor the use of confidence intervals over hypothesis testing to
evaluate equivalence. |

Equivalence between two methods based on confidence intervals is assessed by deter-
mining whether every point within the range of the confidence interval for the true level of
agreement is acceptable. If so, then the two methods may be considered equivalent.

Continuing the example from the previous section involving a correlation, the lower bound
of the one-sided 95% confidence interval for the true correlation is 0.33 based on an observed
estimate of 0.6 from 25 subjects. Since 0 is below the lower confidence bound, one can
conclude that some level of association between the methods is probable. However, given
'~ that 0.4 is the minimum acceptable correlation, validity has not been demenstrated because
correlations as low as 0.33 cannot be ruled out based oh these data. | |

Similarly, the two-sided 95% confidence interval for the true difference in means of vitamin
C measured by the food frequency questionnaire and the dietary record studied by Willett is
(-17.4, 59.4). Agreement between the methods can be inferred only if all values within this
range correspond to a difference of no practical importance.

The use of confidence intervals in validation studies has also been advocated by Burema,
van Staveren and Feunekes (1995). Bland and Altman (1986) proposed a similar af)preach
based on calculating “limits of agreement” for the difference in means. They advocated that
one compute d 4+ 1.96s,4, where d denotes the mean difference in the two methods, and S84
is the standard deviation of the difference. If all individual dlfferences within the range of
* these limits of agreement are acceptable, the authors suggest that the two methods can be
used interchangeably. | |

Although the general idea of this technique is similar to the confidence interval approach
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to evaluating equi'valence,’ the boundaries on the limits of agreement and the confidence
interval can differ quite markedly. Since the confidence interval for the true difference based
on the normal approximation: d & 1.96s4/+/n, is computed using the standard error of the
mean difference rather than the standard deviation, Bland and Altman’s limits of agreement
will be much wider than the confidence interval, and therefore more conservative for assessing
validity, especially with large sample sizes. In particular, in the vitamin C example, the
limits of agreement are (-169.1, 211.1), which is substantially wider than the 95% confidence
interval for the difference computed above. A bias as large as 211 mg/ day in Vitamin C
iﬁtake, which is greater than three times the RDA, would have to be acceptable in order to
conclude equivalence between the methods based on the Bland and Altman method.v

Bland and Altman’s limits of agreement apply primarily to differences between the two
instruments for individuals rather than mean differences. This approach is therefore appli-
cable to evaluate a new method’s use in making individual clinical assessments. However,
when trying to asséss in a validation study whether a systematic bias exists between the
methods, where bias is defined as a difference in the means of the two methods, the confi-
dence interval approach is more appropriate since it conveys the range of plausible values

for the true difference in means.

_ Semple Size Estimation

Suppose one wanted to design a validation study in which two means would be compared
to assess agreement. The goal is to ensure that the study will have adequate power to
conclude that the two methods are interchangeable within a maximum tolerable difference, d,
_under the assumption that the true difference between methods is equal to A. In equivalence
studies, power is generally evaluated at the point of exact equivalence, i.e., A =0. The

required sample size in order for the study to have (1 — 8)% power at a two-sided a level
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can be approximated using the following formula:

_ Ug(zoz/Q + Zﬂ)2
N - (5 _ A)2 ’ . (1)

~ where 072 is the variance of the difference in measurements obtained by the two methods, and
Za/2 and z denote the a/2 and 3 quantiles of the standard normal distribution, respectix}ely.
If an estimate of 0% is not a{railable from previous studies, it can be approximated by assuming
the variances of the measurements from the two methods are equal to a common value, o,
and using the formula,

a3 = 20%(1 - p),
with estimates of 6% and p.

It is easily shown that formula (1) applies whether the hypothesis testing or confidence
interval approaches to evaluating validity are assumed when designing the study. Further-
more, when A = 0, expression (1) equals the sample size formula for paired observations’
used in conventional superiority studies. The interpretation of é differs, of course, in the
two studies. Whereas in equivalence studies, & is defined as the maximum tolerable differ-
ence between groupé, in superiority studies it is the difference that is considered clinically
or scientifically important to detect. Usually, & is smaller when trying to prove equivalence
rather than superiority, since investigators are generally reluctant to tolerate large differ-
ences between groups. Because the sample size is inversely proportional to the sqﬁare of
§, this implies that the required sample sizes for equivalence studies tend to be largér than
superiority studies for the same level of power and Type I error rate.

To determine the sample size of a Validation study utilizing a correlation as the measure
of agreement, assume that we expect the true correlation to be p4. Then, in order for the
study to have (1—3)% power to conclude that the true correlation is greater than a minimum
§ at a one sided a level, the required number of subjects based on Fisher’s transformation

is:
2at 23

N={e6)-con

)2 +3.

101




For example, if the true correlation is expected to be 0.6 and the minimum acceptable corre-
lation is 0.4, then one would need approximately 90 subjects for the study to have 80% power
to conclude validity at a one-sided o = 0.05 level. Under similar assumptions, but usihg a
different approach, Willett (1990) recommended sample sizes of about 100-200 subjécts for

validation studies.

3 Conclusions

In this paper, we have presented statistical methods for inferring whether the validity of
a new dietary-intake instrument has been proven in a validation study. Our approach is
also applicable to nearly all kinds of validity studies employed in epidemiology, not just diet
~ studies, e.g. to questions on smoking, hormone use, sunlight exposure, or surrogate vs. self
respondents. _

Ih planning the analyses of a validity study, a necessary step is to consider what kind of
equivalence is important. Does the absolute level of the two measures need to be equivalent,
orvis it only important that the rank order of subjects on the two measures be very similar?
These questions will determine what equivalence tests are planned.

The proposed methods were illustrated using two common statistics for assessing validity:
the correlation coefficient and the difference in means. However, the methods can also be
- readily extended to other statistics for measuring agreement between dietary instruments,
provided the distribution of the statistic is known or can be approximated. For example, one
can easily apply the principles of equivalence festing to the kappa statistic; which measures
the degree of agreement between categories of nutritional intake, since it is known to have a
large sample normal distribution with asymptotic variance given in Fleiss, Cohen and Everitt
(1969). |

This approach can also be applied to reproducibility studies, in which one defines ad-
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equate reproducibility as an intraclass correlatiohv greater than some defined value. The
formulas for calculating the intraclass correlation, corresponding variance, and conﬁdence
interval needed to apply fhe methods are given in Donner (1986). |

Either of the proposed approaches for assessing validity, based on hypothesis tests or
confidence intervals, is an improvement over current practices in the analysis of validation
studies which include computing estimétes Qf agreement without information on the degree of
© imprecision, or performing inappropriate hypothesis tests. The confidence interval approach
- may be preferable to significance testing fo.r assessing validity because the former is more
informative and easier to interpret. With the significance testing approach, the meaning of
the p—valué depends on the definition of 4. This may be confusing to readers since g—values
are classically associated with conventional hypothesis tests rather than tests of non-null
: yalues. To ‘minimize this confusion, investigators need to be very explicit in defining the

acceptable level of agreement when reporting the p-value of an equivalence test.
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Chapter VI

‘Adjusting Hormone Levels for Day of Men-
strual Cycle in Studies of Breast Cancer and

Hormones in Pre-Menopausal Women




1 Introduction

Although levels of prolactin and bioavailable estradiol appear to be relatively stable over
ther phases of a woman’s menstrual cycle, other hormones, such as total estradiol, fluctuate
considerably. (Toniolo et al., 1993; Koenig et al., 1993.; Wu et al., 1976; Takatani et al.,
1991). Epidemiologic studies investigating the association of total estradiol and risk of breast
cancer among premenopausal women must adjust a subject’s hormone level for day of cycle
either in the design or analysis stage of the study, in order for the corﬁparisdns between cases
and controls to be valid. |

In the NYU‘Women’s Health Study, a nested case-control study of serum hormonal levels
and breast cancer, one of the criteria for matching controls with a breast cancer case among
pre-menopausal women was the day of menstrual cycle on which the first blood specimen was
collected, measured in number of days prior to next expected onset of menses. Subéequent
blood donations, vhowever, could not be matched on day of cycle. Therefore, a method
was needed to standardize hormone measurements obtained at different times during‘the
menstrual cycle for subjects in the same matched set.

Rosenberg et al (1994) used the first measurement from each control subject to fit a three-
piece spline model to describe the change in total estradiol level over the menstrual cycle.
For each subject, the estradiol measurement adjusted for day of cycle was then calculated
as the difference between the observed value and the expected value from this calibration
curve, measured in units of standard deviation. The limitation with this approach, however,
is that because only the first measurement from each subject was used to fit the calibration
curve, the curve is estimated with less precision than one that is estimated using all available
repeated measurements. In addition, the width of the confidence intervals for the felative
~ risks for breast cancer based on the adjusted estradiol measurements are underestjmated,

since they do not take into account the extra variation due to estimation of the parameters
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of the calibration curve.

We propose an alternative method for describing the within-subject change in estradiol
levels over the menstrual cycle, based on a mixed linear model with cubic splines, which
utilizes all the repeated measurement data for each subject. The use of cubic splines _in{the
model yields a smoother curve than the one fit by Rosenberg et al, which was based on a
three-piece spline: two parabolas and a straight line, without smoothed join points. |

We use the results from the mixed linear model to adjust éach subject’s hormone level for
day-of-cycle. The adjusted measurement then becomes the exposure in a conditional logistic
regression analysis. Bootstrap methods are utilized to obtain estimates of the corresponding
95% confidence intervals for the regression coefficients which account for the variation in the

estimated calibration curve.

2 Methods

Let y; = {yi1, ..., Uik, } denote the vector of hormone levels for the ith woman fneasuréd on k;
occasions for ¢ = 1,...n. Furthermore, let t; = {¢, ..., tik,} denote the vector of the number
of days prior to next menses at which the y; were measured. We assume a mixed linear
model of the form o
Yij = b+ o+ S(tij) + €

~ where p denotes an overall mean, o; denotes a random subject effect from a N (0, o2) distri-
bution, S(t;;) is a cubic spline function, and the ¢;; are independent errors from a N(0, o2)
distribution. We further assume that the subject effects and the error terms are mutually
independent. The above model implies that the correlafion between repeated measurements
of hormones on the same subject is equal to 02/(c2 + 02). |

We chose to use cubic splines to model estradiol levels versus day of cycle because this
method provides great flexibility inb fitting Ihodels, is visually smoth, and requires fewer

constants to fit than higher degree splines. Rosenberg et al utilized two parabolic and one
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linear function to describe the change in estradiol over the menstrual cycle, with only a

single continuity restriction. Thus, although their overall function was continuous, it was

not smooth at the two join points.

When fitting a cubic spline model, more join points or knots are better if the variable
changes quickly over the covariate space. However, too many knots can lead to over-fitting
of the data and more parameters to estimate. Stone (1986) suggested that 5 knots should
provide enough flexibility for a reasonable number of degrees of freedom. |

Given that the average length of a menstrual cycle is 28 days, we positioned 5 knots at
the 5 day intervals: 5, 10, 15, 20, and 25 days prior to next menses. Using the 4+ notation
of Smith (1979), let |

up=u if u>0
up =0 if u<0.

Then the cubic spline can be specified as:

S@t) = o+t + Bof? + Bt + Balt — B)% + Bs(t — 10)2
+ Bt — 15)3 + Balt — 200 + Be(t— 25)3.

It folloWs that the overall mixed linear model has the following form:

Yi; = B+ o+ Pt + Batl; + 53?% + Balti; — 5)1 + Bs(ti; — 10)}
+ ,Bs(tij - 15)'3_ + ,87(tij — 20)1 + ,BS(tij - 25)1 + €5 (1)

This model assumes that the shape of the function describing the change in estradiol over
the menstrual cycle is the same for all subjects, but that subjects can differ with regard to
their baseline level on day 0.

Several techniques can be utilized to obtain estimates for the variance components and

regression parameters in a mixed linear model, including traditional analysis of variance

- (ANOVA) methods, maximum likelihood (ML) methods, and restricted maximum likelihood
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(REML) methods. REML estimates of the variance components are generally preferred since
ML estimates do not take into account the degrees of freedom used to estimate the fixed
effects, Wthh can result in estimates of variance components which are downwardly biased
(Laird and Ware, 1982). The ANOVA methodology also has limitations, especially with
unbalanced data, such as negative variance estimates, and lack of distributional properties
(Searle et al). For these reasons, we used the REML method from the SAS PROC MIXED
procedure to fit model (1).

" Once the parameters in model (1) are estimated, estradiol levels adjusted for day of cycle
can be computed using several approaches. One approach is to calculate the deviation of
the subject’s observed value from the expected value for that day of the‘cycle based on the

fitted curve:

A

;5 = Y — S(tyy)- (@

Similarly, when repeated hormone measurements are available on all subjects and the _average

hormonal level is used as the exposure, the average adjusted for day of cycle can be cal@ulated

- as:

SRR ®

~ An alternative approach is to use the estimate of the random sub ject effect, &;, from (1)
for each 4 = 1,..., N. The best linear unbiased predictor (BLUP) of o; is E(cslyi, B,62,62),
the eXpécted value of a;, conditional on y;, [3’ ,62, and 62, which is also the empirical Bayes

~ estimator of ;. It can be shown that

A

(a1|YZa /8’ Og, e) = an(gl - S(tzj)/nz), (4)

where
0
A _ g s

“2.
A2 1 %¢
as-l-nI

4

Note that R, can also be interpreted as the reliability coefficient of ;.
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~ Estradiol levels adjusted for day of cycle can be computed using one of the above ap-
proaches for all subjects and then used as the exposure in the usual logistic (or conditional
logistic for matched studies) regression model to evaluate the association between estradiol
Jevel and risk of breast cancer among pre-menopausal women. The estimates of the standard
errors for the regression parameter will be underestimated, however, since the uncertainty
associated with the estimates for the calibration curve are not taken into account. In this pa-
per, we utilize a bootstrap algorithm for obtaining estimates of the confidence intervals which
include the variability contributed by estimation of the calibration curve. The algorithm is

described in the next section.

3 Results

The primary aim of the NYU Women’s Health Study is to determine whether endogenous
hormones such as estradiol, are associated with risk of breast cancer. Between March 1985
and June 1991, a cohort of healthy women aged 34-65 years were enrolled at the Guttman
Breast Diagnostic Institute, New York. At the time of enrollment and at annual screening
visits thereafter, women were asked to donate blood and complete a self-administered ques-
tionnaire. Serum samples were frozen and stored for future biological assays. Subsequent
cases of breast cancer were identified primarily through active follow-up and confirmed by
reviewing medical and pathological records. |

In order to limit the costs associated with measuring hormone levels in the cohort, a
nested case-control study design was used. For each incident case of breast cancer, indi-
vidually matched.controls were selected at random from the risk set consisting of all cohort
members alive and free of breast cancér at the time of diagnosbis of the case, and who matched
the case on menopausal status at entry, age at entry, and number and approximate dates of
blood donations up to the date of diagnosis in the case. For additional details of the study

design, see Toniolo et al (1991). The association between endogenous estrogens and breast
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cancer in post—rﬁehopausal Women was reported in Toniolo et al (1995). In this paper, we
focus on the association between total estradiol and risk of breast cancer in pre-menopausal
women. | |

A total of 498 estradiol measurements from 367 pre-menopausal control subjecﬁs were

utilized to fit the calibration curve: 278 subjects had 1 measurement, 60 had 2, 28 had 3,

~and 4 had 4 measurements. Only measurements obtained less than 35 days prior to next

menses were included. Total estradiol levels were log transformed prior to mddel fitting to
adjust for deviations from normality.

The estimated mean curve describing the change in log estradiol level over the men-
strual cycle is shown in Figure 1. The parameters in model (1) were estimated as follows:
o= 4.16,5 = .36,0, = —.029, 85 = —.00067, 3, = .00061, 55 = —.012, 5 = .012,3; =
—.0077, ,38 = .0052. These estimates were then used to calculate levels of total estradiol
adjusted for phase of menstrual cycle using the three approaches described above.

The results from fitting conditional logistic regression models to the adjusted total estra—
diol levels are shown in Table 1. The estimate of the logistic regression coefficient based on
the adjusted first and average measurements calculated from (2) and (3), respectively, are
similar to the estimate using the unadjusted first measurement because in the original study
design, cases were matched to controls according to the phase of menstrual cycle of the first
measurement.

In contrast, when the emprical Bayes estimator from (4) was utilized as the exposure,

~ the regression coefficient estimate increased substantially. This increase is not surprising,

given that the estimator in (4) can be viewed as an estimator of (3) that has been corrected
for measurement error. Whittemore (1989), and Armstrong, Whittemore and Howe (1989),

have proposed analogous forms of (4) as a method for correcting for measurement error in

~ linear and logistic regression models. The method, commonly referred to as “Stein shrink-

age”, involves multiplying an exposure variable measured with error by the reliability of the

exposure prior to fitting the regression model to obtain corrected coefficient estimates. In
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- the absence of confounders, measurement error in the exposure variable will result in relative
risk estimates that are attenuated compared to the true relative risk. It follows that meth-
ods which correct for measurement error should yield higher estimates of relative risk than
the uncorrected estimates, and that tl1e regression coefficent based on the empirical Bayes
estimator should be higher than the uncorrected average. It should be noted, however, that
this estimator does not completely correct for measurement error because the reliability co-
efficient in (5) should be adjusted for the matching strata (ref. Kim et al, 1995). That is, the
between—snb ject variance component may bo overestimated if it is not computed controlling
for the variation due to matching. o |

The width of the confidence intervals in Table (1) are underestimated because the extra
variability due to estimation of the calibration curve is not taken into account. To ob-
tain standard errors which incorporate this additional source of variation, we propose the

following bootstrap procedurei

1. Generate a bootstrap sample from the control subjects. |

2. Fit model (1) to the bootstrap sample to estimate the parmeters of the calibration

curve

3. Generate a bootstrap sample from the matched cases and controls, using the matching

stratum as the sampling unit.

4. Adjust the total estradiol measurements for day of menstrual cycle using the estimates

from step (2).
5. Fit conditional logisitc regression models to the adjusted total estradiol measurements.

6. Repeat (1)-(4) 1,000 times, which is the approximate minimum number of bootstraps

necessary to compute bias-corrected confidence limits.

113




The simple (1 — )% confidence interval can be constructed using the o/2 and (1 — /2)
percentiles of the bootstrap distribution. Bias- corrected confidence intervals should be used
when the bootsfrap distribution of the regression parameter is asymmetric and when the

sample size is small.

4 Conclusions

Our proposed method to adjust for the systemafic variability of horm'ones,‘ such as estra-
diol, over the menstrual cycle in studies of pre—menopauszil breast cancer is an imprdverﬁent
over existing methods because all the repeated measurements for each subject are now uti-
lized in estimating the calibration curve. In addition, the incorp‘oration‘ of cubic splines to
describe the cyclical pdttem of hormone levels results in a much smoother curve. Finally,
this technique is easy to implement and also partially corrects for the problem of errors-in-

measurement in the hormone levels.
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Table 1: Logistic Regression Parameter Estimates and 95% Confidence Intervals for
the Associations of Total Estradiol Level and Risk of Breast Cancer in Pre-menopausal
Women -

Exposure Variable Regression Coefficient 95%C.1
Total Estradiol
First measurement 0.19 (-0.23 - 0.61)
Adjusted first measurement 026 (-0.17 - 0.70)
Adjusted average 0.17 (-0.28 - 0.63)
'Empirical Bayes adjusted average 1.52 (-0.83 - 3.87)
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